kovacsvi commited on
Commit
f7e1e22
·
1 Parent(s): b5c8485

added titles to interfaces

Browse files
interfaces/cap.py CHANGED
@@ -101,8 +101,9 @@ def predict_cap(text, language, domain):
101
  return predict(text, model_id, tokenizer_id)
102
 
103
  demo = gr.Interface(
 
104
  fn=predict_cap,
105
  inputs=[gr.Textbox(lines=6, label="Input"),
106
  gr.Dropdown(languages, label="Language"),
107
  gr.Dropdown(domains.keys(), label="Domain")],
108
- outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
101
  return predict(text, model_id, tokenizer_id)
102
 
103
  demo = gr.Interface(
104
+ title="CAP Babel Demo",
105
  fn=predict_cap,
106
  inputs=[gr.Textbox(lines=6, label="Input"),
107
  gr.Dropdown(languages, label="Language"),
108
  gr.Dropdown(domains.keys(), label="Domain")],
109
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
interfaces/emotion.py CHANGED
@@ -50,8 +50,9 @@ def predict_cap(text, language, domain):
50
  return predict(text, model_id, tokenizer_id)
51
 
52
  demo = gr.Interface(
 
53
  fn=predict_cap,
54
  inputs=[gr.Textbox(lines=6, label="Input"),
55
  gr.Dropdown(languages, label="Language"),
56
  gr.Dropdown(domains.keys(), label="Domain")],
57
- outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
50
  return predict(text, model_id, tokenizer_id)
51
 
52
  demo = gr.Interface(
53
+ title="Emotion Babel Demo",
54
  fn=predict_cap,
55
  inputs=[gr.Textbox(lines=6, label="Input"),
56
  gr.Dropdown(languages, label="Language"),
57
  gr.Dropdown(domains.keys(), label="Domain")],
58
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
interfaces/emotion9.py CHANGED
@@ -50,8 +50,9 @@ def predict_e6(text, language, domain):
50
  return predict(text, model_id, tokenizer_id)
51
 
52
  demo = gr.Interface(
 
53
  fn=predict_e6,
54
  inputs=[gr.Textbox(lines=6, label="Input"),
55
  gr.Dropdown(languages, label="Language"),
56
  gr.Dropdown(domains.keys(), label="Domain")],
57
- outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
50
  return predict(text, model_id, tokenizer_id)
51
 
52
  demo = gr.Interface(
53
+ title="Emotions (9) Babel Demo",
54
  fn=predict_e6,
55
  inputs=[gr.Textbox(lines=6, label="Input"),
56
  gr.Dropdown(languages, label="Language"),
57
  gr.Dropdown(domains.keys(), label="Domain")],
58
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
interfaces/illframes.py CHANGED
@@ -102,8 +102,9 @@ def predict_illframes(text, language, domain):
102
  return predict(text, model_id, tokenizer_id, label_names)
103
 
104
  demo = gr.Interface(
 
105
  fn=predict_illframes,
106
  inputs=[gr.Textbox(lines=6, label="Input"),
107
  gr.Dropdown(languages, label="Language"),
108
  gr.Dropdown(domains.keys(), label="Domain")],
109
- outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
102
  return predict(text, model_id, tokenizer_id, label_names)
103
 
104
  demo = gr.Interface(
105
+ title="ILLFRAMES Babel Demo",
106
  fn=predict_illframes,
107
  inputs=[gr.Textbox(lines=6, label="Input"),
108
  gr.Dropdown(languages, label="Language"),
109
  gr.Dropdown(domains.keys(), label="Domain")],
110
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
interfaces/manifesto.py CHANGED
@@ -48,7 +48,8 @@ def predict_cap(text, language):
48
  return predict(text, model_id, tokenizer_id)
49
 
50
  demo = gr.Interface(
 
51
  fn=predict_cap,
52
  inputs=[gr.Textbox(lines=6, label="Input"),
53
  gr.Dropdown(languages, label="Language")],
54
- outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
48
  return predict(text, model_id, tokenizer_id)
49
 
50
  demo = gr.Interface(
51
+ title="Manifesto Babel Demo",
52
  fn=predict_cap,
53
  inputs=[gr.Textbox(lines=6, label="Input"),
54
  gr.Dropdown(languages, label="Language")],
55
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
interfaces/ner.py CHANGED
@@ -44,7 +44,8 @@ def named_entity_recognition(text, language):
44
  return output, output_info
45
 
46
  demo = gr.Interface(
 
47
  fn=named_entity_recognition,
48
  inputs=[gr.Textbox(lines=6, label="Input"),
49
  gr.Dropdown(languages, label="Language")],
50
- outputs=[gr.HighlightedText(label='Output'), gr.Markdown()])
 
44
  return output, output_info
45
 
46
  demo = gr.Interface(
47
+ title="NER Babel Demo",
48
  fn=named_entity_recognition,
49
  inputs=[gr.Textbox(lines=6, label="Input"),
50
  gr.Dropdown(languages, label="Language")],
51
+ outputs=[gr.HighlightedText(label='Output'), gr.Markdown()])
interfaces/ontolisst.py CHANGED
@@ -82,7 +82,8 @@ def predict_cap(text, language):
82
  return predict(text, model_id, tokenizer_id)
83
 
84
  demo = gr.Interface(
 
85
  fn=predict_cap,
86
  inputs=[gr.Textbox(lines=6, label="Input"),
87
  gr.Dropdown(languages, label="Language")],
88
- outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])
 
82
  return predict(text, model_id, tokenizer_id)
83
 
84
  demo = gr.Interface(
85
+ title="ONTOLISST Babel Demo",
86
  fn=predict_cap,
87
  inputs=[gr.Textbox(lines=6, label="Input"),
88
  gr.Dropdown(languages, label="Language")],
89
+ outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])
interfaces/sentiment.py CHANGED
@@ -59,8 +59,9 @@ def predict_cap(text, language, domain):
59
  return predict(text, model_id, tokenizer_id)
60
 
61
  demo = gr.Interface(
 
62
  fn=predict_cap,
63
  inputs=[gr.Textbox(lines=6, label="Input"),
64
  gr.Dropdown(languages, label="Language"),
65
  gr.Dropdown(domains.keys(), label="Domain")],
66
- outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])
 
59
  return predict(text, model_id, tokenizer_id)
60
 
61
  demo = gr.Interface(
62
+ title="Sentiment (3) Babel Demo",
63
  fn=predict_cap,
64
  inputs=[gr.Textbox(lines=6, label="Input"),
65
  gr.Dropdown(languages, label="Language"),
66
  gr.Dropdown(domains.keys(), label="Domain")],
67
+ outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])