Spaces:
Running
Running
revert emotion
Browse files- interfaces/emotion.py +9 -8
interfaces/emotion.py
CHANGED
@@ -7,20 +7,21 @@ from transformers import AutoModelForSequenceClassification
|
|
7 |
from transformers import AutoTokenizer
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
-
from label_dicts import
|
11 |
|
12 |
HF_TOKEN = os.environ["hf_read"]
|
13 |
|
14 |
languages = [
|
15 |
-
"Czech", "English", "German", "Hungarian", "Polish", "Slovak"
|
16 |
]
|
17 |
domains = {
|
18 |
"parliamentary speech": "parlspeech",
|
19 |
}
|
20 |
|
21 |
def build_huggingface_path(language: str):
|
22 |
-
language
|
23 |
-
|
|
|
24 |
|
25 |
def predict(text, model_id, tokenizer_id):
|
26 |
device = torch.device("cpu")
|
@@ -38,18 +39,18 @@ def predict(text, model_id, tokenizer_id):
|
|
38 |
with torch.no_grad():
|
39 |
logits = model(**inputs).logits
|
40 |
|
41 |
-
|
42 |
-
output_pred = {
|
43 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
44 |
return output_pred, output_info
|
45 |
|
46 |
-
def
|
47 |
model_id = build_huggingface_path(language)
|
48 |
tokenizer_id = "xlm-roberta-large"
|
49 |
return predict(text, model_id, tokenizer_id)
|
50 |
|
51 |
demo = gr.Interface(
|
52 |
-
fn=
|
53 |
inputs=[gr.Textbox(lines=6, label="Input"),
|
54 |
gr.Dropdown(languages, label="Language"),
|
55 |
gr.Dropdown(domains.keys(), label="Domain")],
|
|
|
7 |
from transformers import AutoTokenizer
|
8 |
from huggingface_hub import HfApi
|
9 |
|
10 |
+
from label_dicts import MANIFESTO_LABEL_NAMES
|
11 |
|
12 |
HF_TOKEN = os.environ["hf_read"]
|
13 |
|
14 |
languages = [
|
15 |
+
"Czech", "English", "French", "German", "Hungarian", "Polish", "Slovak"
|
16 |
]
|
17 |
domains = {
|
18 |
"parliamentary speech": "parlspeech",
|
19 |
}
|
20 |
|
21 |
def build_huggingface_path(language: str):
|
22 |
+
if language == "Czech" or language == "Slovak":
|
23 |
+
return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4"
|
24 |
+
return "poltextlab/xlm-roberta-large-pooled-MORES"
|
25 |
|
26 |
def predict(text, model_id, tokenizer_id):
|
27 |
device = torch.device("cpu")
|
|
|
39 |
with torch.no_grad():
|
40 |
logits = model(**inputs).logits
|
41 |
|
42 |
+
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
43 |
+
output_pred = {model.config.id2label[i]: probs[i] for i in np.argsort(probs)[::-1]}
|
44 |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
45 |
return output_pred, output_info
|
46 |
|
47 |
+
def predict_cap(text, language, domain):
|
48 |
model_id = build_huggingface_path(language)
|
49 |
tokenizer_id = "xlm-roberta-large"
|
50 |
return predict(text, model_id, tokenizer_id)
|
51 |
|
52 |
demo = gr.Interface(
|
53 |
+
fn=predict_cap,
|
54 |
inputs=[gr.Textbox(lines=6, label="Input"),
|
55 |
gr.Dropdown(languages, label="Language"),
|
56 |
gr.Dropdown(domains.keys(), label="Domain")],
|