Spaces:
Running
Running
add war domain
Browse files- interfaces/illframes.py +6 -13
interfaces/illframes.py
CHANGED
@@ -8,7 +8,7 @@ from transformers import AutoModelForSequenceClassification
|
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
-
from label_dicts import ILLFRAMES_MIGRATION_LABEL_NAMES, ILLFRAMES_COVID_LABEL_NAMES
|
12 |
|
13 |
HF_TOKEN = os.environ["hf_read"]
|
14 |
|
@@ -18,7 +18,8 @@ languages = [
|
|
18 |
|
19 |
domains = {
|
20 |
"Covid": "covid",
|
21 |
-
"Migration": "migration"
|
|
|
22 |
}
|
23 |
|
24 |
|
@@ -55,16 +56,6 @@ def build_huggingface_path(domain: str):
|
|
55 |
|
56 |
def predict(text, model_id, tokenizer_id, label_names):
|
57 |
device = torch.device("cpu")
|
58 |
-
|
59 |
-
# --- DEBUG ---
|
60 |
-
|
61 |
-
disk_space = get_disk_space('/data/')
|
62 |
-
print("Disk Space Info:")
|
63 |
-
for key, value in disk_space.items():
|
64 |
-
print(f"{key}: {value}")
|
65 |
-
|
66 |
-
# ---
|
67 |
-
|
68 |
try:
|
69 |
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, offload_folder="offload", device_map="auto", token=HF_TOKEN)
|
70 |
except:
|
@@ -101,8 +92,10 @@ def predict_illframes(text, language, domain):
|
|
101 |
|
102 |
if domain == "migration":
|
103 |
label_names = ILLFRAMES_MIGRATION_LABEL_NAMES
|
104 |
-
|
105 |
label_names = ILLFRAMES_COVID_LABEL_NAMES
|
|
|
|
|
106 |
|
107 |
return predict(text, model_id, tokenizer_id, label_names)
|
108 |
|
|
|
8 |
from transformers import AutoTokenizer
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
+
from label_dicts import ILLFRAMES_MIGRATION_LABEL_NAMES, ILLFRAMES_COVID_LABEL_NAMES, ILLFRAMES_WAR_LABEL_NAMES
|
12 |
|
13 |
HF_TOKEN = os.environ["hf_read"]
|
14 |
|
|
|
18 |
|
19 |
domains = {
|
20 |
"Covid": "covid",
|
21 |
+
"Migration": "migration",
|
22 |
+
"War": "war"
|
23 |
}
|
24 |
|
25 |
|
|
|
56 |
|
57 |
def predict(text, model_id, tokenizer_id, label_names):
|
58 |
device = torch.device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
try:
|
60 |
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, offload_folder="offload", device_map="auto", token=HF_TOKEN)
|
61 |
except:
|
|
|
92 |
|
93 |
if domain == "migration":
|
94 |
label_names = ILLFRAMES_MIGRATION_LABEL_NAMES
|
95 |
+
elif domain == "covid":
|
96 |
label_names = ILLFRAMES_COVID_LABEL_NAMES
|
97 |
+
elif domain == "war":
|
98 |
+
label_names = ILLFRAMES_WAR_LABEL_NAMES
|
99 |
|
100 |
return predict(text, model_id, tokenizer_id, label_names)
|
101 |
|