Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
from huggingface_hub import HfApi | |
HF_TOKEN = os.environ["hf_read"] | |
languages = [ | |
"English" | |
] | |
from label_dicts import ONTOLISST_LABEL_NAMES | |
# --- DEBUG --- | |
import shutil | |
def convert_size(size): | |
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']: | |
if size < 1024: | |
return f"{size:.2f} {unit}" | |
size /= 1024 | |
def get_disk_space(path="/"): | |
total, used, free = shutil.disk_usage(path) | |
return { | |
"Total": convert_size(total), | |
"Used": convert_size(used), | |
"Free": convert_size(free) | |
} | |
# --- | |
def build_huggingface_path(language: str): | |
return "poltextlab/xlm-roberta-large_ontolisst_v1" | |
def predict(text, model_id, tokenizer_id): | |
device = torch.device("cpu") | |
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
# --- DEBUG --- | |
disk_space = get_disk_space('/data/') | |
print("Disk Space Info:") | |
for key, value in disk_space.items(): | |
print(f"{key}: {value}") | |
# --- | |
model.to(device) | |
inputs = tokenizer(text, | |
max_length=256, | |
truncation=True, | |
padding="do_not_pad", | |
return_tensors="pt").to(device) | |
model.eval() | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() | |
predicted_class_id = probs.argmax() | |
predicted_class_id = {4: 2, 5: 1}.get(predicted_class_id, 0) | |
output_pred = ONTOLISST_LABEL_NAMES.get(predicted_class_id, predicted_class_id) | |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>' | |
return output_pred, output_info | |
def predict_cap(text, language): | |
model_id = build_huggingface_path(language) | |
tokenizer_id = "xlm-roberta-large" | |
return predict(text, model_id, tokenizer_id) | |
demo = gr.Interface( | |
title="ONTOLISST Babel Demo", | |
fn=predict_cap, | |
inputs=[gr.Textbox(lines=6, label="Input"), | |
gr.Dropdown(languages, label="Language")], | |
outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()]) | |