babelmachine / interfaces /emotion9.py
poltextlab's picture
remove offloading
1c7d65e verified
raw
history blame
2.05 kB
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import EMOTION9_LABEL_NAMES
HF_TOKEN = os.environ["hf_read"]
languages = [
"Czech", "English", "German", "Hungarian", "Polish", "Slovak"
]
domains = {
"parliamentary speech": "parlspeech",
}
def build_huggingface_path(language: str):
language = language.lower()
return f"poltextlab/xlm-roberta-large-pooled-{language}-emotions9"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
inputs = tokenizer(text,
max_length=512,
truncation=True,
padding="do_not_pad",
return_tensors="pt").to(device)
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
NUMS_DICT = {i: key for i, key in enumerate(sorted(EMOTION9_LABEL_NAMES.keys()))}
output_pred = {f"[{NUMS_DICT[i]}] {EMOTION9_LABEL_NAMES[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_e6(text, language, domain):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
fn=predict_e6,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language"),
gr.Dropdown(domains.keys(), label="Domain")],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])