kovacsvi commited on
Commit
8ea1705
·
1 Parent(s): 44d3c68

markdown, radio buttons

Browse files
Files changed (1) hide show
  1. interfaces/cap_minor_media.py +17 -1
interfaces/cap_minor_media.py CHANGED
@@ -139,10 +139,26 @@ def predict_cap(text, language, domain):
139
 
140
  return predict(text, major_model_id, minor_model_id, tokenizer_id)
141
 
 
 
 
 
 
 
 
 
 
 
142
  demo = gr.Interface(
143
  title="CAP Media/Minor Topics Babel Demo",
144
  fn=predict_cap,
145
- inputs=[gr.Textbox(lines=6, label="Input"),
 
 
 
 
 
 
146
  gr.Dropdown(languages, label="Language"),
147
  gr.Dropdown(domains.keys(), label="Domain")],
148
  outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])
 
139
 
140
  return predict(text, major_model_id, minor_model_id, tokenizer_id)
141
 
142
+ description = """
143
+ You can choose between two approaches for making predictions:
144
+
145
+ 1. **Hierarchical Classification**
146
+ First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category.
147
+
148
+ 2. **Flat Classification (single model)**
149
+ A single model directly predicts the most relevant label from all available classes, without distinguishing between major and subtopics.
150
+ """
151
+
152
  demo = gr.Interface(
153
  title="CAP Media/Minor Topics Babel Demo",
154
  fn=predict_cap,
155
+ inputs=[gr.Markdown(description)
156
+ gr.Radio(
157
+ choices=["Hierarchical Classification", "Flat Classification"],
158
+ label="Prediction Mode",
159
+ value="Hierarchical Classification"
160
+ )
161
+ gr.Textbox(lines=6, label="Input"),
162
  gr.Dropdown(languages, label="Language"),
163
  gr.Dropdown(domains.keys(), label="Domain")],
164
  outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])