babel_machine / interfaces /cap_minor_media.py
kovacsvi
interpretation info
3e91901
raw
history blame
6.34 kB
import gradio as gr
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch.nn.functional as F
from huggingface_hub import HfApi
from collections import defaultdict
from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES,
CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES)
from .utils import is_disk_full
HF_TOKEN = os.environ["hf_read"]
languages = [
"Multilingual",
]
domains = {
"media": "media"
}
NUM_TOP_CLASSES = 5
CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values())
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values())
major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)}
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)}
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)}
major_to_minor_map = defaultdict(list)
for code in CAP_MIN_CODES:
major_id = int(str(code)[:-2])
major_to_minor_map[major_id].append(code)
major_to_minor_map = dict(major_to_minor_map)
def normalize_probs(probs: dict) -> dict:
total = sum(probs.values())
return {k: v / total for k, v in probs.items()}
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(language: str, domain: str):
return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3")
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
device = torch.device("cpu")
# Load major and minor models + tokenizer
major_model = AutoModelForSequenceClassification.from_pretrained(
major_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
minor_model = AutoModelForSequenceClassification.from_pretrained(
minor_model_id,
low_cpu_mem_usage=True,
device_map="auto",
offload_folder="offload",
token=HF_TOKEN
).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
# Tokenize input
inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)
# Predict major topic
major_model.eval()
with torch.no_grad():
major_logits = major_model(**inputs).logits
major_probs = F.softmax(major_logits, dim=-1)
major_probs_np = major_probs.cpu().numpy().flatten()
top_major_index = int(np.argmax(major_probs_np))
top_major_id = major_index_to_id[top_major_index]
# Default: show major topic predictions
filtered_probs = {
i: float(major_probs_np[i])
for i in np.argsort(major_probs_np)[::-1]
}
filtered_probs = normalize_probs(filtered_probs)
output_pred = {
f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[major_index_to_id[k]]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
# If eligible for minor prediction
if top_major_id in major_to_minor_map:
valid_minor_ids = major_to_minor_map[top_major_id]
minor_model.eval()
with torch.no_grad():
minor_logits = minor_model(**inputs).logits
minor_probs = F.softmax(minor_logits, dim=-1)
print(minor_probs) # debug
# Restrict to valid minor codes
valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index]
filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices}
print(filtered_probs) # debug
filtered_probs = normalize_probs(filtered_probs)
print(filtered_probs) # debug
output_pred = {
f"[{top_major_id}] {CAP_MEDIA_LABEL_NAMES[top_major_id]} [{k}] {CAP_MIN_LABEL_NAMES[k]}": v
for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
}
output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'
interpretation_info = """
## How to Interpret These Values (Hierarchical Classification)
This method returns either:
- A list of **major (media) topic confidences**, or
- A list of **minor topic confidences**.
In the case of minor topics, the values are the confidences for minor topics **within a given major topic**, and they are **normalized to sum to 1**.
**Note:** This method cannot return a mix of major and minor topic predictions.
"""
return interpretation_info, output_pred, output_info
def predict_cap(tmp, method, text, language, domain):
domain = domains[domain]
major_model_id, minor_model_id = build_huggingface_path(language, domain)
tokenizer_id = "xlm-roberta-large"
if is_disk_full():
os.system('rm -rf /data/models*')
os.system('rm -r ~/.cache/huggingface/hub')
return predict(text, major_model_id, minor_model_id, tokenizer_id)
description = """
You can choose between two approaches for making predictions:
**1. Hierarchical Classification**
First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category.
**2. Flat Classification (single model)**
A single model directly predicts the most relevant label from all available classes (both media and minor topics).
"""
demo = gr.Interface(
title="CAP Media/Minor Topics Babel Demo",
fn=predict_cap,
inputs=[gr.Markdown(description),
gr.Radio(
choices=["Hierarchical Classification", "Flat Classification"],
label="Prediction Mode",
value="Hierarchical Classification"
),
gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language"),
gr.Dropdown(domains.keys(), label="Domain")],
outputs=[gr.Markdown(), gr.Label(label="Output"), gr.Markdown()])