Spaces:
Running
on
Zero
Running
on
Zero
import requests | |
from collections import Counter | |
from requests.adapters import HTTPAdapter, Retry | |
import gradio as gr | |
import pandas as pd | |
import polars as pl | |
import spaces | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from huggingface_hub import PyTorchModelHubMixin | |
import torch | |
from torch import nn | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504]) | |
session.mount('http://', HTTPAdapter(max_retries=retries)) | |
class QualityModel(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, config): | |
super(QualityModel, self).__init__() | |
self.model = AutoModel.from_pretrained(config["base_model"]) | |
self.dropout = nn.Dropout(config["fc_dropout"]) | |
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"])) | |
def forward(self, input_ids, attention_mask): | |
features = self.model( | |
input_ids=input_ids, attention_mask=attention_mask | |
).last_hidden_state | |
dropped = self.dropout(features) | |
outputs = self.fc(dropped) | |
return torch.softmax(outputs[:, 0, :], dim=1) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta") | |
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta") | |
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device) | |
model.eval() | |
def predict(texts: list[str]): | |
inputs = tokenizer( | |
texts, return_tensors="pt", padding="longest", truncation=True | |
).to(device) | |
outputs = model(inputs["input_ids"], inputs["attention_mask"]) | |
predicted_classes = torch.argmax(outputs, dim=1) | |
predicted_domains = [ | |
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy() | |
] | |
return predicted_domains | |
def plot_and_df(texts, preds): | |
texts_df = pd.DataFrame({"quality": preds, "text": texts}) | |
counts = Counter(preds) | |
counts_df = pd.DataFrame( | |
{ | |
"quality": ["Low", "Medium", "High"], | |
"count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)] | |
} | |
) | |
# counts.reset_index(inplace=True) | |
return ( | |
gr.BarPlot(counts_df, x="quality", y="count"), | |
texts_df[texts_df["quality"] == "Low"][["text"]][:20], | |
texts_df[texts_df["quality"] == "Medium"][["text"]][:20], | |
texts_df[texts_df["quality"] == "High"][["text"]][:20], | |
) | |
def run_quality_check(dataset, column, batch_size, num_examples): | |
# config = "default" | |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json() | |
if "error" in info_resp: | |
yield "β " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"])) | |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next( | |
iter(info_resp["dataset_info"][config]["splits"])) | |
try: | |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column]) | |
except pl.exceptions.ComputeError: | |
try: | |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column]) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
texts = data[column].to_list() | |
# batch_size = 100 | |
predictions, texts_processed = [], [] | |
num_examples = min(len(texts), num_examples) | |
for i in range(0, num_examples, batch_size): | |
batch_texts = texts[i:i+batch_size] | |
batch_predictions = predict(batch_texts) | |
predictions.extend(batch_predictions) | |
texts_processed.extend(batch_texts) | |
yield {"check in progress...": (i+batch_size) / num_examples}, *plot_and_df(texts_processed, predictions) | |
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# π« Dataset Quality Checker π« | |
Use [nvidia/quality-classifier-deberta](https://huggingface.co/nvidia/quality-classifier-deberta) on any text dataset on the Hub. | |
""" | |
) | |
dataset_name = HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
# value="fka/awesome-chatgpt-prompts", | |
) | |
# config_name = "default" # TODO: user input | |
with gr.Accordion("Dataset preview", open=False): | |
def embed(name): | |
html_code = f""" | |
<iframe | |
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train" | |
frameborder="0" | |
width="100%" | |
height="700px" | |
></iframe> | |
""" | |
return gr.HTML(value=html_code) | |
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)") | |
batch_size = gr.Slider(0, 128, 32, step=8, label="Inference batch size (set this to smaller value if this space crashes.)") | |
num_examples = gr.Number(500, label="Number of first examples to check") | |
gr_check_btn = gr.Button("Check Dataset") | |
progress_bar = gr.Label(show_label=False) | |
plot = gr.BarPlot() | |
with gr.Accordion("Explore some individual examples for each class", open=False): | |
gr.Markdown("### Low") | |
df_low = gr.DataFrame() | |
gr.Markdown("### Medium") | |
df_medium = gr.DataFrame() | |
gr.Markdown("### High") | |
df_high = gr.DataFrame() | |
gr_check_btn.click(run_quality_check, inputs=[dataset_name, text_column, batch_size, num_examples], outputs=[progress_bar, plot, df_low, df_medium, df_high]) | |
demo.launch() |