polinaeterna
add prop of non-ascii
352586a
raw
history blame
7.08 kB
import requests
from collections import Counter
from requests.adapters import HTTPAdapter, Retry
import multiprocessing
import gradio as gr
import pandas as pd
import polars as pl
import numpy as np
import matplotlib.pyplot as plt
import spaces
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import PyTorchModelHubMixin
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
def proportion_non_ascii(s):
"""
Compute the proportion of non-ASCII characters in a string.
Parameters:
s (str): The input string.
Returns:
float: The proportion of non-ASCII characters in the string.
"""
non_ascii_count = sum(1 for c in s if ord(c) > 127)
total_chars = len(s)
return non_ascii_count / total_chars if total_chars > 0 else 0.0
class QualityModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, config):
super(QualityModel, self).__init__()
self.model = AutoModel.from_pretrained(config["base_model"])
self.dropout = nn.Dropout(config["fc_dropout"])
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))
def forward(self, input_ids, attention_mask):
features = self.model(
input_ids=input_ids, attention_mask=attention_mask
).last_hidden_state
dropped = self.dropout(features)
outputs = self.fc(dropped)
return torch.softmax(outputs[:, 0, :], dim=1)
device = "cuda" if torch.cuda.is_available() else "cpu"
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta")
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta")
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device)
model.eval()
@spaces.GPU
def predict(texts: list[str]):
inputs = tokenizer(
texts, return_tensors="pt", padding="longest", truncation=True
).to(device)
outputs = model(inputs["input_ids"], inputs["attention_mask"])
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()
]
return predicted_domains
def plot_and_df(texts, preds):
texts_df = pd.DataFrame({"quality": preds, "text": texts})
counts = Counter(preds)
counts_df = pd.DataFrame(
{
"quality": ["Low", "Medium", "High"],
"count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)]
}
)
# counts.reset_index(inplace=True)
return (
gr.BarPlot(counts_df, x="quality", y="count"),
texts_df[texts_df["quality"] == "Low"][["text"]][:20],
texts_df[texts_df["quality"] == "Medium"][["text"]][:20],
texts_df[texts_df["quality"] == "High"][["text"]][:20],
)
def run_quality_check(dataset, column, batch_size, num_examples):
# config = "default"
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
if "error" in info_resp:
yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), plt.Figure()
return
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
iter(info_resp["dataset_info"][config]["splits"]))
try:
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
except pl.exceptions.ComputeError:
try:
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
except Exception as error:
yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), plt.Figure()
return
texts = data[column].to_list()
# batch_size = 100
predictions, texts_processed = [], []
num_examples = min(len(texts), num_examples)
for i in range(0, num_examples, batch_size):
batch_texts = texts[i:i+batch_size]
batch_predictions = predict(batch_texts)
predictions.extend(batch_predictions)
texts_processed.extend(batch_texts)
yield {"check in progress...": (i+batch_size) / num_examples}, *plot_and_df(texts_processed, predictions), plt.Figure()
with multiprocessing.Pool(processes=8) as pool:
props = pool.map(proportion_non_ascii, texts)
# non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
plt.hist(props, bins=20, range=(0., 1.))
plt.title('Histogram of proportion of non-ASCII characters')
plt.xlabel('Proportion of non-ASCII characters')
plt.ylabel('Number of texts')
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), plt.gcf()
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ’« Dataset Quality Checker πŸ’«
Use [nvidia/quality-classifier-deberta](https://huggingface.co/nvidia/quality-classifier-deberta) on any text dataset on the Hub.
"""
)
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
# value="fka/awesome-chatgpt-prompts",
)
# config_name = "default" # TODO: user input
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=dataset_name)
def embed(name):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="700px"
></iframe>
"""
return gr.HTML(value=html_code)
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
batch_size = gr.Slider(0, 128, 32, step=8, label="Inference batch size (set this to smaller value if this space crashes.)")
num_examples = gr.Number(500, label="Number of first examples to check")
gr_check_btn = gr.Button("Check Dataset")
progress_bar = gr.Label(show_label=False)
plot = gr.BarPlot()
with gr.Accordion("Explore some individual examples for each class", open=False):
gr.Markdown("### Low")
df_low = gr.DataFrame()
gr.Markdown("### Medium")
df_medium = gr.DataFrame()
gr.Markdown("### High")
df_high = gr.DataFrame()
# non_ascii_hist = gr.DataFrame(visible=False)
non_ascii_hist = gr.Plot()
gr_check_btn.click(run_quality_check, inputs=[dataset_name, text_column, batch_size, num_examples], outputs=[progress_bar, plot, df_low, df_medium, df_high, non_ascii_hist])
demo.launch()