File size: 6,149 Bytes
55810aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " # Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --upgrade"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install langchain einops accelerate transformers bitsandbytes"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Import Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\YouTube\\6-06-2023 - Falcon\\falcon\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from langchain import HuggingFacePipeline\n",
    "from langchain import PromptTemplate,  LLMChain\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import transformers\n",
    "import os \n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Check if cuda is available \n",
    "torch.cuda.is_available()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Build the Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define Model ID\n",
    "model_id = \"tiiuae/falcon-40b-instruct\"\n",
    "# Load Tokenizer\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "# Load Model \n",
    "model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir='./workspace/', \n",
    "    torch_dtype=torch.bfloat16, trust_remote_code=True, device_map=\"auto\", offload_folder=\"offload\")\n",
    "# Set PT model to inference mode\n",
    "model.eval()\n",
    "# Build HF Transformers pipeline \n",
    "pipeline = transformers.pipeline(\n",
    "    \"text-generation\", \n",
    "    model=model,\n",
    "    tokenizer=tokenizer,\n",
    "    device_map=\"auto\",\n",
    "    max_length=400,\n",
    "    do_sample=True,\n",
    "    top_k=10,\n",
    "    num_return_sequences=1,\n",
    "    eos_token_id=tokenizer.eos_token_id\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test out the pipeline\n",
    "pipeline('who is kim kardashian?')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pass it to Langchain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Setup prompt template\n",
    "template = PromptTemplate(input_variables=['input'], template='{input}') \n",
    "# Pass hugging face pipeline to langchain class\n",
    "llm = HuggingFacePipeline(pipeline=pipeline) \n",
    "# Build stacked LLM chain i.e. prompt-formatting + LLM\n",
    "chain = LLMChain(llm=llm, prompt=template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test LLMChain \n",
    "response = chain.run('who is kim kardashian?')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Build Gradio App"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install Gradio for the UI component\n",
    "!pip install gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import gradio for UI\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create generate function - this will be called when a user runs the gradio app \n",
    "def generate(prompt): \n",
    "    # The prompt will get passed to the LLM Chain!\n",
    "    return chain.run(prompt)\n",
    "    # And will return responses "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define a string variable to hold the title of the app\n",
    "title = 'πŸ¦œπŸ”— Falcon-40b-Instruct'\n",
    "# Define another string variable to hold the description of the app\n",
    "description = 'This application demonstrates the use of the open-source `Falcon-40b-Instruct` LLM.'\n",
    "# pls subscribe πŸ™"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Build gradio interface, define inputs and outputs...just text in this\n",
    "gr.Interface(fn=generate, inputs=[\"text\"], outputs=[\"text\"], \n",
    "             # Pass through title and description\n",
    "             title=title, description=description, \n",
    "             # Set theme and launch parameters\n",
    "             theme='finlaymacklon/boxy_violet').launch(server_port=8080, share=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "falcon",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}