Spaces:
Runtime error
Runtime error
File size: 1,767 Bytes
b3b72cf 7c2904b 74a0653 b3b72cf 74a0653 b3b72cf 74a0653 b3b72cf 7c2904b b3b72cf 74a0653 b3b72cf 74a0653 b3b72cf 74a0653 b3b72cf 7c2904b 74a0653 b3b72cf 74a0653 b3b72cf 74a0653 b3b72cf 7c2904b b3b72cf 74a0653 b3b72cf 74a0653 b3b72cf 74a0653 7c2904b b3b72cf 7c2904b 74a0653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
import gradio as gr
from transformers import pipeline
# Load the API key from environment variables
api_key = os.getenv("HF_API_KEY")
if api_key is None:
print("HF_API_KEY not found. Please set it in the Space's secrets.")
else:
# Set the necessary environment variables for Hugging Face Transformers
os.environ["HF_HOME"] = "/workspace" # Use the /workspace directory in Hugging Face Spaces
os.environ["TRANSFORMERS_CACHE"] = "/workspace/cache" # Cache directory in Space
os.environ["HF_API_KEY"] = api_key # Set the API key for Transformers library
# Initialize the model using the API key and Transformers pipeline
try:
model_name = "tiiuae/falcon-180B" # Ensure this is the correct model name
nlp_model = pipeline('text-generation', model=model_name)
print("Model loaded successfully.")
except Exception as e:
nlp_model = None
print(f"Failed to load model: {str(e)}")
def generate_text(prompt):
"""Generate text based on the input prompt using the loaded NLP model."""
if nlp_model:
try:
response = nlp_model(prompt, max_length=50, num_return_sequences=1)
return response[0]['generated_text']
except Exception as e:
return f"Error during model inference: {str(e)}"
else:
return "Model could not be loaded or initialized properly."
# Setup Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
outputs="text",
title="Text Generation with Falcon Model",
description="Enter some text and see how the Falcon model continues it!"
)
# Essential for Hugging Face Spaces
if __name__ == "__main__":
iface.launch() |