File size: 4,231 Bytes
51e2f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing import Any, Callable

import numpy as np
import torch
import torchmetrics as tm
from torch._C import _LinAlgError
from torchmetrics import functional as tmF


class SafeSignalDistortionRatio(tm.SignalDistortionRatio):
    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)

    def update(self, *args, **kwargs) -> Any:
        try:
            super().update(*args, **kwargs)
        except:
            pass

    def compute(self) -> Any:
        if self.total == 0:
            return torch.tensor(torch.nan)
        return super().compute()


class BaseChunkMedianSignalRatio(tm.Metric):
    def __init__(

            self,

            func: Callable,

            window_size: int,

            hop_size: int = None,

            zero_mean: bool = False,

    ) -> None:
        super().__init__()

        # self.zero_mean = zero_mean
        self.func = func
        self.window_size = window_size
        if hop_size is None:
            hop_size = window_size
        self.hop_size = hop_size

        self.add_state(
            "sum_snr",
            default=torch.tensor(0.0),
            dist_reduce_fx="sum"
            )
        self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

    def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:

        n_samples = target.shape[-1]

        n_chunks = int(
            np.ceil((n_samples - self.window_size) / self.hop_size) + 1
            )

        snr_chunk = []

        for i in range(n_chunks):
            start = i * self.hop_size

            if n_samples - start < self.window_size:
                continue

            end = start + self.window_size

            try:
                chunk_snr = self.func(
                        preds[..., start:end],
                        target[..., start:end]
                        )

                # print(preds.shape, chunk_snr.shape)

                if torch.all(torch.isfinite(chunk_snr)):
                    snr_chunk.append(chunk_snr)
            except _LinAlgError:
                pass

        snr_chunk = torch.stack(snr_chunk, dim=-1)
        snr_batch, _ = torch.nanmedian(snr_chunk, dim=-1)

        self.sum_snr += snr_batch.sum()
        self.total += snr_batch.numel()

    def compute(self) -> Any:
        return self.sum_snr / self.total


class ChunkMedianSignalNoiseRatio(BaseChunkMedianSignalRatio):
    def __init__(

            self,

            window_size: int,

            hop_size: int = None,

            zero_mean: bool = False

    ) -> None:
        super().__init__(
                func=tmF.signal_noise_ratio,
                window_size=window_size,
                hop_size=hop_size,
                zero_mean=zero_mean,
        )


class ChunkMedianScaleInvariantSignalNoiseRatio(BaseChunkMedianSignalRatio):
    def __init__(

            self,

            window_size: int,

            hop_size: int = None,

            zero_mean: bool = False

    ) -> None:
        super().__init__(
                func=tmF.scale_invariant_signal_noise_ratio,
                window_size=window_size,
                hop_size=hop_size,
                zero_mean=zero_mean,
        )


class ChunkMedianSignalDistortionRatio(BaseChunkMedianSignalRatio):
    def __init__(

            self,

            window_size: int,

            hop_size: int = None,

            zero_mean: bool = False

    ) -> None:
        super().__init__(
                func=tmF.signal_distortion_ratio,
                window_size=window_size,
                hop_size=hop_size,
                zero_mean=zero_mean,
        )


class ChunkMedianScaleInvariantSignalDistortionRatio(
        BaseChunkMedianSignalRatio
        ):
    def __init__(

            self,

            window_size: int,

            hop_size: int = None,

            zero_mean: bool = False

    ) -> None:
        super().__init__(
                func=tmF.scale_invariant_signal_distortion_ratio,
                window_size=window_size,
                hop_size=hop_size,
                zero_mean=zero_mean,
        )