import streamlit as st import torch from torch import nn from transformers import BertModel, AutoTokenizer, AutoModel, pipeline from time import time import matplotlib.pyplot as plt # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = 'cpu' from PIL import Image # dict for decoding / enclding labels labels = {'cs.NE': 0, 'cs.CL': 1, 'cs.AI': 2, 'stat.ML': 3, 'cs.CV': 4, 'cs.LG': 5} labels_decoder = {'cs.NE': 'Neural and Evolutionary Computing', 'cs.CL': 'Computation and Language', 'cs.AI': 'Artificial Intelligence', 'stat.ML': 'Machine Learning (stat)', 'cs.CV': 'Computer Vision', 'cs.LG': 'Machine Learning'} model_name = 'bert-base-uncased' tokenizer = AutoTokenizer.from_pretrained(model_name) class BertClassifier(nn.Module): def __init__(self, n_classes, dropout=0.5, model_name='bert-base-uncased'): super(BertClassifier, self).__init__() self.bert = BertModel.from_pretrained(model_name) self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(768, n_classes) self.relu = nn.ReLU() def forward(self, input_id, mask): _, pooled_output = self.bert(input_ids=input_id, attention_mask=mask,return_dict=False) dropout_output = self.dropout(pooled_output) linear_output = self.linear(dropout_output) final_layer = self.relu(linear_output) return final_layer @st.cache(suppress_st_warning=True) def build_model(): model = BertClassifier(n_classes=len(labels)) st.markdown("Model created") model.load_state_dict(torch.load('model_weights_1.pt', map_location=torch.device('cpu'))) model.eval() st.markdown("Model weights loaded") return model def inference(txt): # infers classes for text topic based on loaded trained model t2 = tokenizer(txt.lower().replace('\n', ''), padding='max_length', max_length = 512, truncation=True, return_tensors="pt") inp2 = t2['input_ids'].to(device) mask2 = t2['attention_mask'].unsqueeze(0).to(device) out = model(inp2, mask2) out = out.cpu().detach().numpy().reshape(-1) out = out/out.sum() * 100 res = [(l, o) for l, o in zip (list(labels.keys()), out.tolist())] return res def infer_and_display_result(txt): start_time = time() res = inference(txt) res.sort(key = lambda x : - x[1]) st.markdown("###Inference results:") for lbl, score in res: if score >=1: st.write(f"[ {lbl:<7}] {labels_decoder[lbl]:<35} {score:.1f}%") res_plot = [] # storage for plot data total=0 for r in res: if total < 95: res_plot.append(r) total += r[1] else: break res.sort(key = lambda x : x[1]) fig, ax = plt.subplots(figsize=(10, len(res_plot))) for r in res_plot : ax.barh(r[0], r[1]) st.pyplot(fig) st.markdown(f"cycle time = {time() - start_time:.2f} s.") # ====================================== st.title('Big-data cloud application for scientific article topic inference using in-memory computing and stuff.') image = Image.open('dilbert_big_data.jpg') st.image(image) st.write('test application for ML-2 class, YSDA-2022' ) # st.markdown("", unsafe_allow_html=True) # st.markdown("###Predict topic by abstract.") text1 = st.text_area("ENTER ARTICLE TITLE HERE") text2 = st.text_area("ENTER ARTICLE ABSTRACT HERE") text = text1 + ' ' + text2 action = st.button('click here to infer topic') action2 = st.button('to uppercase') if action: if len(text) < 3: st.write("this text is too short or empty. try again") else: model = build_model() infer_and_display_result(text) if action2: st.write(text.upper()) action3 = st.button('to lowercase') if action3: st.write(text.lower())