Poe Dator
upd code
ec34e2f
raw
history blame
2.79 kB
import streamlit as st
import torch
from torch import nn
from transformers import BertModel, AutoTokenizer, AutoModel, pipeline
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = 'cpu'
st.markdown("### Privet, mir!")
st.markdown("<img width=200px src='https://i.pinimg.com/736x/11/33/19/113319f0ffe91f4bb0f468914b9916da.jpg'>", unsafe_allow_html=True)
text = st.text_area("ENTER TEXT HERE")
st.markdown("INFERENCE STARTS ...")
# dict for decoding / enclding labels
labels = {'cs.NE': 0, 'cs.CL': 1, 'cs.AI': 2, 'stat.ML': 3, 'cs.CV': 4, 'cs.LG': 5}
labels_decoder = {'cs.NE': 'Neural and Evolutionary Computing', 'cs.CL': 'Computation and Language', 'cs.AI': 'Artificial Intelligence',
'stat.ML': 'Machine Learning (stat)', 'cs.CV': 'Computer Vision', 'cs.LG': 'Machine Learning'}
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
class BertClassifier(nn.Module):
def __init__(self, n_classes, dropout=0.5, model_name='bert-base-uncased'):
super(BertClassifier, self).__init__()
self.bert = BertModel.from_pretrained(model_name)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(768, n_classes)
self.relu = nn.ReLU()
def forward(self, input_id, mask):
_, pooled_output = self.bert(input_ids=input_id, attention_mask=mask,return_dict=False)
dropout_output = self.dropout(pooled_output)
linear_output = self.linear(dropout_output)
final_layer = self.relu(linear_output)
return final_layer
model = BertClassifier(n_classes=len(labels))
st.markdown("Model created")
model.load_state_dict(torch.load('model_weights_1.pt', map_location=torch.device('cpu')))
model.eval()
st.markdown("Model weights loaded")
def inference(txt, mode=None):
# infers classes for text topic based on the trained model from above
# has separate mode 'print' for just output
txt = txt.lower().replace('\n', '')
t2 = tokenizer(txt,
padding='max_length', max_length = 512, truncation=True,
return_tensors="pt")
inp2 = t2['input_ids'].to(device)
mask2 = t2['attention_mask'].unsqueeze(0).to(device)
out = model(inp2, mask2)
out = out.cpu().detach().numpy().reshape(-1)
out = out/out.sum() * 100
res = [(l, o) for l, o in zip (list(labels.keys()), out.tolist())]
if mode == 'print':
res.sort(key = lambda x : - x[1])
for lbl, score in res:
if score >=1:
print(f"[{lbl:<7}] {labels_decoder[lbl]:<35} {score:.1f}%")
elif mode == 'debug':
return out, res
else:
return res
res = inference(text, mode=None)
st.markdown("INFERENCE RESULT:")
st.markdown(f"{res}")