Spaces:
Runtime error
Runtime error
added from main on GitHub, implemented QAchain on chatbot
Browse files- .streamlit/config.toml +6 -0
- Home.py +119 -35
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
primaryColor = "#FF0000" # Bright red for interactive elements
|
| 3 |
+
backgroundColor = "#000000" # Black background for the main content area
|
| 4 |
+
secondaryBackgroundColor = "#121212" # A slightly lighter shade of black for the sidebar
|
| 5 |
+
textColor = "#FFFFFF" # White for text to contrast the dark background
|
| 6 |
+
font = "monospace" # A techy font style.
|
Home.py
CHANGED
|
@@ -5,6 +5,7 @@ import time
|
|
| 5 |
from module.__custom__ import *
|
| 6 |
from streamlit_extras.switch_page_button import switch_page
|
| 7 |
|
|
|
|
| 8 |
# Openai API Key
|
| 9 |
import openai
|
| 10 |
import json
|
|
@@ -25,8 +26,6 @@ def read_api_key_from_secrets(file_path='secrets.json'):
|
|
| 25 |
|
| 26 |
# Example usage
|
| 27 |
try:
|
| 28 |
-
# key = read_api_key_from_secrets()
|
| 29 |
-
# key = os.environ['key']
|
| 30 |
openai.api_key = os.environ['key']
|
| 31 |
os.environ['OPENAI_API_KEY'] = os.environ['key']
|
| 32 |
print(f"OpenAI API Key Found")
|
|
@@ -56,31 +55,111 @@ db_plot = Chroma(
|
|
| 56 |
embedding_function=embedding
|
| 57 |
)
|
| 58 |
|
| 59 |
-
metadata_field_info = [
|
| 60 |
-
AttributeInfo(
|
| 61 |
-
name="name",
|
| 62 |
-
description="The name of the video game on steam",
|
| 63 |
-
type="string",
|
| 64 |
-
)
|
| 65 |
-
]
|
| 66 |
-
document_content_description = "Brief summary of a video game on Steam"
|
| 67 |
-
|
| 68 |
|
| 69 |
with st.sidebar: is_plot = st.toggle('Enable Plot')
|
| 70 |
db_selected = db_cos
|
| 71 |
if is_plot: db_selected = db_plot
|
| 72 |
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
# Initialize chat history
|
| 86 |
if "messages" not in st.session_state:
|
|
@@ -118,21 +197,26 @@ if prompt := st.chat_input("Need a game recommendation?"):
|
|
| 118 |
message_placeholder = st.empty()
|
| 119 |
|
| 120 |
# docs = db.max_marginal_relevance_search(prompt,k=query_num, fetch_k=10) # Sending query to db
|
| 121 |
-
docs =
|
|
|
|
|
|
|
|
|
|
| 122 |
full_response = random.choice( # 1st sentence of response
|
| 123 |
-
["
|
| 124 |
-
f"Hi, human! These are the {len(docs)} best games:\n",
|
| 125 |
-
f"I bet you will love these {len(docs)} games:\n",]
|
| 126 |
)
|
| 127 |
|
| 128 |
# formatting response from db
|
| 129 |
top_games = []
|
| 130 |
assistant_response = ""
|
| 131 |
-
for idx, doc in enumerate(docs):
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
# separating response into chunk of words
|
| 137 |
chunks = []
|
| 138 |
for line in assistant_response.splitlines():
|
|
@@ -159,12 +243,12 @@ with col2:
|
|
| 159 |
|
| 160 |
|
| 161 |
# Styling on Tabs
|
| 162 |
-
css=
|
| 163 |
-
div.stTabs {
|
| 164 |
-
height:
|
| 165 |
-
|
|
|
|
| 166 |
overflow-x: hidden;
|
| 167 |
-
}
|
| 168 |
-
</style>
|
| 169 |
'''
|
| 170 |
-
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)
|
|
|
|
| 5 |
from module.__custom__ import *
|
| 6 |
from streamlit_extras.switch_page_button import switch_page
|
| 7 |
|
| 8 |
+
|
| 9 |
# Openai API Key
|
| 10 |
import openai
|
| 11 |
import json
|
|
|
|
| 26 |
|
| 27 |
# Example usage
|
| 28 |
try:
|
|
|
|
|
|
|
| 29 |
openai.api_key = os.environ['key']
|
| 30 |
os.environ['OPENAI_API_KEY'] = os.environ['key']
|
| 31 |
print(f"OpenAI API Key Found")
|
|
|
|
| 55 |
embedding_function=embedding
|
| 56 |
)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
with st.sidebar: is_plot = st.toggle('Enable Plot')
|
| 60 |
db_selected = db_cos
|
| 61 |
if is_plot: db_selected = db_plot
|
| 62 |
|
| 63 |
|
| 64 |
+
|
| 65 |
+
from langchain.agents.agent_toolkits.conversational_retrieval.tool import (
|
| 66 |
+
create_retriever_tool,
|
| 67 |
+
)
|
| 68 |
+
retriever = db_selected.as_retriever()
|
| 69 |
+
retriever_tool = create_retriever_tool(
|
| 70 |
+
retriever,
|
| 71 |
+
"document-retriever",
|
| 72 |
+
"Query a retriever to get information about the video game dataset.",
|
| 73 |
)
|
| 74 |
+
from typing import List
|
| 75 |
+
|
| 76 |
+
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
| 77 |
+
from pydantic import BaseModel, Field
|
| 78 |
|
| 79 |
+
|
| 80 |
+
class Response(BaseModel):
|
| 81 |
+
"""Final response to the question being asked.
|
| 82 |
+
If you do not have an answer, say you do not have an answer, and ask the user to ask another recommendation.
|
| 83 |
+
If you do have an answer, be verbose and explain why you think the game answers the user's query.
|
| 84 |
+
Don't give information not mentioned in the documents CONTEXT.
|
| 85 |
+
You should always refuse to answer questions that are not related to this specific domain, of video game recommendation.
|
| 86 |
+
If no document passes the minimum threshold of similarity .75, default to apologizing for no answer.
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
answer: str = Field(description="The final answer to the user, including the names in the answer.")
|
| 90 |
+
name: List[str] = Field(
|
| 91 |
+
description="A list of the names of the games found for the user. Only include the game name if it was given as a result to the user's query."
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
import json
|
| 95 |
+
|
| 96 |
+
from langchain.schema.agent import AgentActionMessageLog, AgentFinish
|
| 97 |
+
def parse(output):
|
| 98 |
+
# If no function was invoked, return to user
|
| 99 |
+
if "function_call" not in output.additional_kwargs:
|
| 100 |
+
return AgentFinish(return_values={"output": output.content}, log=output.content)
|
| 101 |
+
|
| 102 |
+
# Parse out the function call
|
| 103 |
+
function_call = output.additional_kwargs["function_call"]
|
| 104 |
+
name = function_call["name"]
|
| 105 |
+
inputs = json.loads(function_call["arguments"])
|
| 106 |
+
|
| 107 |
+
# If the Response function was invoked, return to the user with the function inputs
|
| 108 |
+
if name == "Response":
|
| 109 |
+
return AgentFinish(return_values=inputs, log=str(function_call))
|
| 110 |
+
# Otherwise, return an agent action
|
| 111 |
+
else:
|
| 112 |
+
return AgentActionMessageLog(
|
| 113 |
+
tool=name, tool_input=inputs, log="", message_log=[output]
|
| 114 |
+
)
|
| 115 |
+
from langchain.agents import AgentExecutor
|
| 116 |
+
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
| 117 |
+
from langchain.chat_models import ChatOpenAI
|
| 118 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 119 |
+
from langchain.tools.render import format_tool_to_openai_function
|
| 120 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 121 |
+
[
|
| 122 |
+
("system", "You are a recommendation assistant, based off documents."),
|
| 123 |
+
("user", "{input}"),
|
| 124 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
| 125 |
+
]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
llm_with_tools = llm.bind(
|
| 129 |
+
functions=[
|
| 130 |
+
# The retriever tool
|
| 131 |
+
format_tool_to_openai_function(retriever_tool),
|
| 132 |
+
# Response schema
|
| 133 |
+
convert_pydantic_to_openai_function(Response),
|
| 134 |
+
]
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
agent = (
|
| 138 |
+
{
|
| 139 |
+
"input": lambda x: x["input"],
|
| 140 |
+
# Format agent scratchpad from intermediate steps
|
| 141 |
+
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
| 142 |
+
x["intermediate_steps"]
|
| 143 |
+
),
|
| 144 |
+
}
|
| 145 |
+
| prompt
|
| 146 |
+
| llm_with_tools
|
| 147 |
+
| parse
|
| 148 |
+
)
|
| 149 |
+
agent_executor = AgentExecutor(tools=[retriever_tool], agent=agent, verbose=True)
|
| 150 |
+
|
| 151 |
+
post_prompt = """Do not give me any information that is not included in the document.
|
| 152 |
+
If you do not have an answer, say 'I do not have an answer for that, please ask another question. If you need more context from the user, ask them to
|
| 153 |
+
provide more context in the next query. Do not include games that contain the queried game in the title.
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
st.header("🕹️ GameInsightify - Your Personal Game Recommender")
|
| 157 |
+
|
| 158 |
+
# Description for users
|
| 159 |
+
st.markdown("""
|
| 160 |
+
Welcome to GameInsightify! This chatbot will help you find the perfect game based on your preferences.
|
| 161 |
+
Just type in what you're looking for in a game, and let our AI assistant provide recommendations.
|
| 162 |
+
""")
|
| 163 |
|
| 164 |
# Initialize chat history
|
| 165 |
if "messages" not in st.session_state:
|
|
|
|
| 197 |
message_placeholder = st.empty()
|
| 198 |
|
| 199 |
# docs = db.max_marginal_relevance_search(prompt,k=query_num, fetch_k=10) # Sending query to db
|
| 200 |
+
docs = agent_executor.invoke(
|
| 201 |
+
{"input": f"{prompt} {post_prompt}"},
|
| 202 |
+
return_only_outputs=True,
|
| 203 |
+
) # retrieve response from chatgpt
|
| 204 |
full_response = random.choice( # 1st sentence of response
|
| 205 |
+
[""]
|
|
|
|
|
|
|
| 206 |
)
|
| 207 |
|
| 208 |
# formatting response from db
|
| 209 |
top_games = []
|
| 210 |
assistant_response = ""
|
| 211 |
+
# for idx, doc in enumerate(docs['name']):
|
| 212 |
+
# gamename = doc
|
| 213 |
+
# top_games.append(gamename)
|
| 214 |
+
# assistant_response += f"{idx+1}. {gamename}\n"
|
| 215 |
+
print(docs)
|
| 216 |
+
try:
|
| 217 |
+
assistant_response += docs["answer"]
|
| 218 |
+
except:
|
| 219 |
+
assistant_response += docs["output"]
|
| 220 |
# separating response into chunk of words
|
| 221 |
chunks = []
|
| 222 |
for line in assistant_response.splitlines():
|
|
|
|
| 243 |
|
| 244 |
|
| 245 |
# Styling on Tabs
|
| 246 |
+
css = '''
|
| 247 |
+
div.stTabs {
|
| 248 |
+
min-height: 20vh; # Minimum height set for the chat area
|
| 249 |
+
max-height: 60vh; # Maximum height, after which scrolling starts
|
| 250 |
+
overflow-y: auto; # Allows scrolling when content exceeds max height
|
| 251 |
overflow-x: hidden;
|
| 252 |
+
}
|
|
|
|
| 253 |
'''
|
| 254 |
+
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)
|