Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import colorsys | |
| from functools import partial | |
| import random | |
| def lighten_color(hex_color, factor=1.8): | |
| """Lightens a HEX color by increasing its brightness in HSV space.""" | |
| hex_color = hex_color.lstrip("#") | |
| r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16) | |
| # Convert to HSV | |
| h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0) | |
| v = min(1.0, v * factor) # Increase brightness | |
| # Convert back to HEX | |
| r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v)] | |
| return f'#{r:02x}{g:02x}{b:02x}' | |
| def darken_color(hex_color, factor=0.7): | |
| """Darkens a hex color by reducing its brightness in the HSV space.""" | |
| hex_color = hex_color.lstrip("#") | |
| r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16) | |
| # Convert to HSV to adjust brightness | |
| h, s, v = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0) | |
| v = max(0, v * factor) # Reduce brightness | |
| # Convert back to HEX | |
| r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, s, v)] | |
| return f'#{r:02x}{g:02x}{b:02x}' | |
| # Generate unique colors for pairs | |
| def generate_color(index, total_colors=20): | |
| """Generates a unique, evenly spaced color for each index using HSL.""" | |
| hue = index / total_colors # Spread hues in range [0,1] | |
| saturation = 0.65 # Keep colors vivid | |
| lightness = 0.75 # Balanced brightness | |
| # Convert HSL to RGB | |
| r, g, b = colorsys.hls_to_rgb(hue, lightness, saturation) | |
| r, g, b = int(r * 255), int(g * 255), int(b * 255) | |
| return f'#{r:02x}{g:02x}{b:02x}' # Convert to hex | |
| def highlight_pairs(text1, text2): | |
| """Highlight matching pairs between two paragraphs""" | |
| # Predefined matching pairs | |
| match_pairs = [ | |
| {"index": 1, "text1": "deep learning", "start1": 13, "end1": 26, | |
| "text2": "deep learning", "start2": 12, "end2": 25}, | |
| {"index": 2, "text1": "neural networks", "start1": 56, "end1": 71, | |
| "text2": "neural networks", "start2": 68, "end2": 83}, | |
| {"index": 3, "text1": "AI research", "start1": 86, "end1": 97, | |
| "text2": "AI research", "start2": 55, "end2": 66}, | |
| ] | |
| # Assign unique colors to each index | |
| pair_colors = {pair["index"]: generate_color(pair["index"], total_colors=len(match_pairs)) for pair in match_pairs} | |
| def apply_highlight(text, pairs, key_start, key_end, key_index, pair_colors): | |
| highlighted_text = "" | |
| prev_end = 0 | |
| for pair in sorted(pairs, key=lambda x: x[key_start]): | |
| start, end, index = pair[key_start], pair[key_end], pair[key_index] | |
| color = pair_colors.get(index, "#ddd") # Default color if not found | |
| color = lighten_color(color, factor=2.2) # Lightened color for background text | |
| label_color = darken_color(color, factor=0.7) # Make label color darker | |
| # Style the index as a label | |
| index_label = (f'<span style="background-color:{label_color}; color:white; ' | |
| f'padding:1px 4px; border-radius:4px; font-size:12px; ' | |
| f'font-weight:bold; display:inline-block; margin-right:4px;">{index}</span>') | |
| # Append non-highlighted text | |
| highlighted_text += text[prev_end:start] | |
| # Append highlighted text with index label | |
| highlighted_text += (f'<span style="background-color:{color}; ' | |
| f'border-radius:3px; font-size:14px; display:inline-block;">' | |
| f'{index_label} {text[start:end]}</span>') | |
| prev_end = end | |
| # Append remaining text | |
| highlighted_text += text[prev_end:] | |
| return highlighted_text | |
| # Apply highlighting to both paragraphs using the global MATCH_PAIRS | |
| highlighted_text1 = apply_highlight(text1, match_pairs, "start1", "end1", "index", pair_colors) | |
| highlighted_text2 = apply_highlight(text2, match_pairs, "start2", "end2", "index", pair_colors) | |
| return highlighted_text1, highlighted_text2 | |
| if __name__ == '__main__': | |
| # Create Gradio Interface | |
| text1 = "" | |
| with gr.Blocks() as demo: | |
| gr.Markdown("### Highlight Matching Parts Between Two Paragraphs") | |
| text1_input = gr.Textbox( | |
| label="Paragraph 1", | |
| lines=5, | |
| value="The field of deep learning is advancing rapidly. Modern neural networks are improving AI research significantly." | |
| ) | |
| text2_input = gr.Textbox( | |
| label="Paragraph 2", | |
| lines=5, | |
| value="Advances in deep learning have led to breakthroughs in AI research. Neural networks are at the core of these innovations" | |
| ) | |
| output1 = gr.HTML() | |
| output2 = gr.HTML() | |
| submit_button = gr.Button("Highlight Matches") | |
| submit_button.click( | |
| fn=highlight_pairs, | |
| inputs=[text1_input, text2_input], | |
| outputs=[output1, output2] | |
| ) | |
| # Launch the Gradio app | |
| demo.launch() | |