pmkhanh7890's picture
solve bugs, update combination score and label, add method for better searching.
504f37b
raw
history blame
5.64 kB
from collections import Counter
import os
import string
import requests
from dotenv import load_dotenv
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from src.application.text.entity import extract_entities
load_dotenv()
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
SEARCH_ENGINE_ID = os.getenv("SEARCH_ENGINE_ID")
def search_by_google(
query,
num_results=10,
is_exact_terms = False
) -> dict:
"""
Searches the Google Custom Search Engine for the given query.
Args:
query: The search query.
is_exact_terms: Whether to use exact terms search (True) or regular search (False).
num_results: The number of results to return (default: 10).
Returns:
A dictionary containing the search results or None if there was an error.
"""
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": GOOGLE_API_KEY,
"cx": SEARCH_ENGINE_ID,
"num": num_results,
}
if is_exact_terms:
params["exactTerms"] = query
else:
params["q"] = query.replace('"', "")
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
print(f"Error: {response.status_code}, {response.text}")
return None
def get_most_frequent_words(input_text, number_word=32):
"""
Gets the top words from the input text, excluding stop words and punctuation.
Args:
input_text: The input text as a string.
number_word: The number of top words to return.
Returns:
A list of tuples, where each tuple contains a word and its frequency.
Returns an empty list if input is not a string or is empty.
"""
if not isinstance(input_text, str) or not input_text:
return []
words = word_tokenize(input_text.lower()) # Tokenize and lowercase
stop_words = set(stopwords.words('english'))
punctuation = set(string.punctuation) # get all punctuation
filtered_words = [
word for word in words
if word.isalnum() and word not in stop_words and word not in punctuation
]
word_frequencies = Counter(filtered_words)
top_words = word_frequencies.most_common(number_word)
for top_word in top_words:
words.append(top_word[0])
if len(words) > 32:
search_phrase = " ".join(words[:32])
else:
search_phrase = " ".join(words[:number_word])
return search_phrase
def get_chunk(input_text, chunk_length=32, num_chunk=3):
"""
Splits the input text into chunks of a specified length.
Args:
input_text: The input text as a string.
num_chunk: The maximum number of chunks to create.
chunk_length: The desired length of each chunk (in words).
Returns:
A list of string chunks.
Returns an empty list if input is invalid.
"""
if not isinstance(input_text, str):
return []
chunks = []
input_words = input_text.split() # Split by any whitespace
for i in range(num_chunk):
start_index = i * chunk_length
end_index = (i + 1) * chunk_length
chunk = " ".join(input_words[start_index:end_index])
if chunk: # Only append non-empty chunks
chunks.append(chunk)
return chunks
def get_keywords(text, num_keywords=5):
"""Return top k keywords from a doc using TF-IDF method"""
# Create a TF-IDF Vectorizer
vectorizer = TfidfVectorizer(stop_words='english')
# Fit and transform the text
tfidf_matrix = vectorizer.fit_transform([text])
# Get feature names (words)
feature_names = vectorizer.get_feature_names_out()
# Get TF-IDF scores
tfidf_scores = tfidf_matrix.toarray()[0]
# Sort words by TF-IDF score
word_scores = list(zip(feature_names, tfidf_scores))
word_scores.sort(key=lambda x: x[1], reverse=True)
# Return top keywords
return [word for word, score in word_scores[:num_keywords]]
def generate_search_phrases(input_text):
"""
Generates different types of phrases for search purposes.
Args:
input_text: The input text.
Returns:
A list containing:
- A list of most frequent words.
- The original input text.
- A list of text chunks.
"""
if not isinstance(input_text, str):
return []
search_phrases = []
# Method 1: Get most frequent words
search_phrases.append(get_most_frequent_words(input_text))
# Method 2: Get the whole text
search_phrases.append(input_text)
# Method 3: Split text by chunks
search_phrases.extend(get_chunk(input_text)) # TODO: for demo purposes
# Method 4: Get most identities and key words
entities = extract_entities(input_text)
text_without_entities = remove_identities_from_text(input_text, entities)
print(f"text_without_entities: {text_without_entities}")
search_phrases.append(text_without_entities)
#keywords = get_keywords(input_text, 16)
#search_phrase = " ".join(entities) + " " + " ".join(keywords)
# search_phrases.append(search_phrase) # TODO: for demo purposes
return search_phrases
def remove_identities_from_text(input_text, entities):
"""
Removes entities from the input text.
Args:
input_text: The input text as a string.
entities: A list of entities to be removed.
"""
for entity in entities:
input_text = input_text.replace(entity, "")
return input_text