File size: 19,779 Bytes
da7dbd0
d952fbe
56cf7e3
da7dbd0
56cf7e3
da7dbd0
d952fbe
da7dbd0
1ce1659
 
badcb49
da7dbd0
 
 
 
 
 
d952fbe
 
 
 
 
 
da7dbd0
 
 
a6b0abd
d952fbe
 
 
da7dbd0
 
 
 
 
 
1ce1659
da7dbd0
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
 
 
 
d952fbe
a6b0abd
 
 
 
 
 
 
 
 
 
56cf7e3
a6b0abd
 
56cf7e3
 
 
 
 
 
 
 
 
d952fbe
a6b0abd
56cf7e3
 
a6b0abd
 
 
 
 
 
 
da7dbd0
a6b0abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
a6b0abd
 
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b0abd
da7dbd0
 
 
 
 
 
 
 
1ce1659
da7dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
 
56cf7e3
 
 
d952fbe
56cf7e3
 
 
 
 
da7dbd0
56cf7e3
 
 
 
 
 
 
d952fbe
56cf7e3
 
 
 
 
 
 
da7dbd0
 
d952fbe
 
da7dbd0
 
 
 
56cf7e3
 
 
 
 
da7dbd0
56cf7e3
 
da7dbd0
56cf7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
 
 
 
56cf7e3
d952fbe
 
 
da7dbd0
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
d952fbe
da7dbd0
 
 
d952fbe
b489aea
d952fbe
 
da7dbd0
 
 
d952fbe
da7dbd0
 
d952fbe
 
1ce1659
da7dbd0
d952fbe
56cf7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
 
 
 
 
56cf7e3
 
 
 
 
 
 
 
 
d952fbe
a6b0abd
b489aea
 
 
 
 
 
 
a6b0abd
 
d952fbe
 
 
 
 
 
 
 
 
 
 
1ce1659
56cf7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
56cf7e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from difflib import SequenceMatcher
import difflib
import string
from src.application.image.image_detection import detect_image_by_ai_model, detect_image_by_reverse_search, detect_image_from_news_image
from src.application.text.entity import apply_highlight, highlight_entities
from src.application.text.model_detection import detect_text_by_ai_model
from src.application.text.preprocessing import split_into_sentences
from src.application.text.search_detection import check_human, detect_text_by_relative_search


class NewsVerification():
    def __init__(self):
        self.news_text = ""
        self.news_title = ""
        self.news_content = ""
        self.news_image = ""
        
        self.text_prediction_label:list[str] = []
        self.text_prediction_score:list[float] = []
        self.text_referent_url:list[str] = []
        self.image_prediction_label:list[str] = []
        self.image_prediction_score:list[str] = []
        self.image_referent_url:list[str] = []
        self.news_prediction_label = ""
        self.news_prediction_score = -1
        
        self.found_img_url:list[str] = ["https://ichef.bbci.co.uk/ace/standard/819/cpsprodpb/8acc/live/86282470-defb-11ef-ba00-65100a906e68.jpg"]
        self.aligned_sentences:list[dict] = []
        self.is_paraphrased:list[bool] = []
        self.analyzed_table:list[list] = []
        
    def load_news(self, news_title, news_content, news_image):
        self.news_text = news_title + "\n\n" + news_content
        self.news_title = news_title
        self.news_content = news_content
        self.news_image = news_image

    def determine_text_origin(self):
        """
        Determines the origin of the given text based on paraphrasing detection and human authorship analysis.

        Args:
            text: The input text to be analyzed.

        Returns:
            str: The predicted origin of the text: 
                - "HUMAN": If the text is likely written by a human.
                - "MACHINE": If the text is likely generated by a machine.
        """
        print("CHECK TEXT:")
        print("\tFrom search engine:")
        # Classify by search engine
        input_sentences = split_into_sentences(self.news_text)
        current_index = 0
        previous_paraphrase = None
        ai_sentence = {
            "input_sentence": "",
            "matched_sentence": "",
            "label": "",
            "similarity": None,
            "paraphrase": False,
            "url": "",
            }

        for index, sentence in enumerate(input_sentences):
            print(f"-------index = {index}-------")
            print(f"current_sentence = {input_sentences[index]}")

            if current_index >= len(input_sentences):
                break
            if current_index >= index and index != 0 and index != len(input_sentences) - 1:
                continue
            
            paraphrase, text_url, searched_sentences, img_urls, current_index = detect_text_by_relative_search(input_sentences, index)

            if paraphrase is False:
                # add sentence to ai_sentence
                if ai_sentence["input_sentence"] != "":
                    ai_sentence["input_sentence"] += "<br>"
                ai_sentence["input_sentence"] += sentence
                if index == len(input_sentences) - 1:
                    # add ai_sentences to align_sentences
                    text_prediction_label, text_prediction_score = detect_text_by_ai_model(ai_sentence["input_sentence"])
                    ai_sentence["label"] = text_prediction_label
                    ai_sentence["similarity"] = text_prediction_score
                    self.aligned_sentences.append(ai_sentence)
            else:
                if previous_paraphrase is False or previous_paraphrase is None:
                    # add ai_sentences to align_sentences
                    if ai_sentence["input_sentence"] != "":
                        text_prediction_label, text_prediction_score = detect_text_by_ai_model(ai_sentence["input_sentence"])
                        ai_sentence["label"] = text_prediction_label
                        ai_sentence["similarity"] = text_prediction_score
                        self.aligned_sentences.append(ai_sentence)
                    
                        # reset
                        ai_sentence = {
                            "input_sentence": "",
                            "matched_sentence": "",
                            "label": "",
                            "similarity": None,
                            "paraphrase": False,
                            "url": "",
                            }
                    
                # add searched_sentences to align_sentences
                if searched_sentences["input_sentence"] != "":
                    self.found_img_url.extend(img_urls)
                    if check_human(searched_sentences):
                        searched_sentences["label"] = "HUMAN"
                    else:
                        searched_sentences["label"] = "MACHINE"
                        
                    self.aligned_sentences.append(searched_sentences)

            previous_paraphrase = paraphrase

    def detect_image_origin(self):
        print("CHECK IMAGE:")
        if self.news_image is None:
            self.image_prediction_label = "UNKNOWN"
            self.image_prediction_score = 0.0
            self.image_referent_url = None
            return
        
        for image in self.found_img_url:
            print(f"\tfound_img_url: {image}")    
        matched_url, similarity = detect_image_from_news_image(self.news_image, self.found_img_url)
        if matched_url is not None:
            print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
            self.image_prediction_label = "HUMAN"
            self.image_prediction_score = similarity
            self.image_referent_url = matched_url
            return
        
        matched_url, similarity = detect_image_by_reverse_search(self.news_image)
        if matched_url is not None:
            print(f"matching image: {matched_url}\nsimilarity: {similarity}\n")
            self.image_prediction_label = "HUMAN"
            self.image_prediction_score = similarity
            self.image_referent_url = matched_url
            return
        
        detected_label, score = detect_image_by_ai_model(self.news_image)
        if detected_label:
            print(f"detected_label: {detected_label} ({score})")
            self.image_prediction_label = detected_label
            self.image_prediction_score = score
            self.image_referent_url = None
            return
        
        self.image_prediction_label = "UNKNOWN"
        self.image_prediction_score = 50
        self.image_referent_url = None

    def determine_news_origin(self):
        if self.text_prediction_label == "MACHINE":
            text_prediction_score = 100 - self.text_prediction_score
        elif self.text_prediction_label == "UNKNOWN":
            text_prediction_score = 50
        else:
            text_prediction_score = self.text_prediction_score
            
        if self.image_prediction_label == "MACHINE":
            image_prediction_score = 100 - self.image_prediction_score
        elif self.image_prediction_label == "UNKNOWN":
            image_prediction_score = 50
        else:
            image_prediction_score = self.image_prediction_score
        
        news_prediction_score = (text_prediction_score + image_prediction_score) / 2
        if news_prediction_score > 50:
            self.news_prediction_score = news_prediction_score
            self.news_prediction_label = "HUMAN"
        else:
            self.news_prediction_score = 100 - news_prediction_score
            self.news_prediction_label = "MACHINE"

    def generate_analysis_report(self):
        self.determine_text_origin()
        self.detect_image_origin()

    def analyze_details(self):
        self.analyzed_table = []

        for aligned_sentence in self.aligned_sentences:
            if "input_sentence" not in aligned_sentence:
                continue
            
            # Get index of equal phrases in input and source sentences
            equal_idx_1, equal_idx_2 = self.extract_equal_text(
                    aligned_sentence["input_sentence"],
                    aligned_sentence["matched_sentence"],
                )
            
            # Get entity-words (in pair) with colors
            entities_with_colors = highlight_entities(
                    aligned_sentence["input_sentence"],
                    aligned_sentence["matched_sentence"],
                )
            
            self.analyzed_table.append(
                [
                    aligned_sentence["input_sentence"],
                    aligned_sentence["matched_sentence"],
                    equal_idx_1,
                    equal_idx_2,
                    entities_with_colors,
                ]
            )
        
        if len(self.analyzed_table) != 0:
            html_table = self.create_table()
        else:
            html_table = ""
        return html_table
        
    def extract_equal_text(self, text1, text2):
        def cleanup(text):
            text = text.lower()
            text = text.translate(str.maketrans('', '', string.punctuation))
            return text
        
        splited_text1 = cleanup(text1).split()
        splited_text2 = cleanup(text2).split()
        
        s = SequenceMatcher(None, splited_text1, splited_text2)
        
        equal_idx_1 = []
        equal_idx_2 = []
        text1 = text1.split()
        text2 = text2.split()
        for tag, i1, i2, j1, j2 in s.get_opcodes():
            if tag == 'equal':
                equal_idx_1.append({"start": i1, "end": i2})
                equal_idx_2.append({"start": j1, "end": j2})
                # subtext_1 = " ".join(text1[i1:i2])
                # subtext_2 = " ".join(text2[j1:j2])
                # print(f'{tag:7}   a[{i1:2}:{i2:2}] --> b[{j1:2}:{j1:2}] {subtext_1!r:>55} --> {subtext_2!r}')
        return equal_idx_1, equal_idx_2
    
    def get_text_urls(self):
        return set(self.text_referent_url)


    def compare_sentences(self, sentence_1, sentence_2, position, color):
        """
        Compares two sentences and identifies common phrases, outputting their start and end positions.

        Args:
            sentence_1: The first sentence (string).
            sentence_2: The second sentence (string).

        Returns:
            A list of dictionaries, where each dictionary represents a common phrase and contains:
                - "phrase": The common phrase (string).
                - "start_1": The starting index of the phrase in sentence_1 (int).
                - "end_1": The ending index of the phrase in sentence_1 (int).
                - "start_2": The starting index of the phrase in sentence_2 (int).
                - "end_2": The ending index of the phrase in sentence_2 (int).
            Returns an empty list if no common phrases are found.  Handles edge cases like empty strings.
        """

        if not sentence_1 or not sentence_2:  # Handle empty strings
            return []

        s = difflib.SequenceMatcher(None, sentence_1, sentence_2)
        common_phrases = []

        for block in s.get_matching_blocks():
            if block.size > 0:  # Ignore zero-length matches
                start_1 = block.a
                end_1 = block.a + block.size
                start_2 = block.b
                end_2 = block.b + block.size

                phrase = sentence_1[start_1:end_1]  # Or sentence_2[start_2:end_2], they are the same

                common_phrases.append({
                    "phrase": phrase,
                    "start_1": start_1 + position,
                    "end_1": end_1 + position,
                    "start_2": start_2,
                    "end_2": end_2,
                    "color": color,
                })
        position += len(sentence_1)
        return common_phrases, position

    def create_table(self):
        #table_rows = "\n".join([self.format_row(row) for row in self.analyzed_table])
        # loop of self.analyzed_table with index:
        rows = []
        max_length = 30  # TODO: put this in configuration
        rows.append(self.format_image_row(max_length))
        
        for index, row in enumerate(self.analyzed_table):
            formatted_row = self.format_text_row(row, index, max_length)
            rows.append(formatted_row)
        table = "\n".join(rows)
        return f"""
        <h5>Comparison between input news and source news</h5>
        <table border="1" style="width:100%; text-align:left; border-collapse:collapse;">
            <thead>
                <tr>
                    <th>Input news</th>
                    <th>Source (URL provided in Originality column correspondingly)</th>
                    <th>Forensic</th>
                    <th>Originality</th>
                </tr>
            </thead>
            <tbody>
                {table}
            </tbody>
        </table>
        
        <style>
    """
    
    def format_text_row(self, row, index = 0, max_length=30):
        if row[1] != "":  # source is not empty
            # highlight entities
            input_sentence, highlight_idx_input = apply_highlight(row[0], row[4], "input")
            source_sentence, highlight_idx_source = apply_highlight(row[1], row[4], "source")
            print(f"highlighted_input: {input_sentence}")
            
            # Color overlapping words
            input_sentence = self.color_text(input_sentence, row[2], highlight_idx_input)  # text, index of highlight words
            source_sentence = self.color_text(source_sentence, row[3], highlight_idx_source)  # text, index of highlight words
            print(f"input_sentence: {input_sentence}")
            
            input_sentence = input_sentence.replace("span_style", "span style").replace("1px_4px", "1px 4px")
            source_sentence = source_sentence.replace("span_style", "span style").replace("1px_4px", "1px 4px")
        else:
            input_sentence = row[0]
            source_sentence = row[1]

        label = self.aligned_sentences[index]["label"]
        score = self.aligned_sentences[index]["similarity"]
        
        url = self.aligned_sentences[index]["url"] #
        short_url = self.shorten_url(url, max_length)
        source_text_url = f"""<a href="{url}">{short_url}</a>"""
        
        return f"""
                <tr>
                    <td>{input_sentence}</td>
                    <td>{source_sentence}</td>
                    <td>{label}<br>({score*100:.2f}%)</td>
                    <td>{source_text_url}</td>
                </tr>
                """

    def format_image_row(self, max_length=30):        
        # input_image = f"""<img src="example_image_input.jpg" width="200" height="150">"""
        
        if self.image_referent_url is not None or self.image_referent_url != "":
            source_image = f"""<img src="{self.image_referent_url}" width="200" height="150">"""
            short_url = self.shorten_url(self.image_referent_url, max_length)
            source_image_url = f"""<a href="{self.image_referent_url}">{short_url}</a>"""
        else:
            source_image = "Image not found"
            source_image_url = ""

        return f"""<tr><td>input image</td><td>{source_image}</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td>{source_image_url}</td></tr>"""
    
    def shorten_url(self, url, max_length=30):
        if url is None:
            return ""
        
        if len(url) > max_length:
            short_url = url[:max_length] + "..."
        else:
            short_url = url
        return short_url

    def color_text(self, text, colored_idx, highlighted_idx):
        paragraph = ""
        words = text.split()
        
        starts, ends = self.extract_starts_ends(colored_idx)
        starts, ends = self.filter_indices(starts, ends, highlighted_idx)
        print(f"highlighted_idx: {highlighted_idx}")
        print(f"starts_2: {starts}")
        print(f"ends_2: {ends}")
        previous_end = 0
        for start, end in zip(starts, ends):
            paragraph += " ".join(words[previous_end:start])
            
            equal_words = " ".join(words[start:end])
            print(f"starts_2: {start}")
            print(f"ends_2: {end}")
            print(f"equal_words: {words[start:end]}")
            paragraph += f" <span style='color:#00FF00;'>{equal_words}</span> "
            
            previous_end = end
        
        # Some left words due to the punctuation separated from 
        # the highlighting text
        equal_words = " ".join(words[previous_end:])
        print(f"starts_2: {previous_end}")
        print(f"ends_2: {len(words)-1}")
        print(f"equal_words: {words[previous_end:]}")
        paragraph += f" <span style='color:#00FF00;'>{equal_words}</span> "

        return paragraph
    
    def extract_starts_ends(self, colored_idx):
        starts = []
        ends = []
        for index in colored_idx:
            starts.append(index['start'])
            ends.append(index['end'])
        return starts, ends
        
    
    def filter_indices(self, starts, ends, ignore_indices):
        """
        Filters start and end indices to exclude any indices present in the ignore_indices list.

        Args:
            starts: A list of starting indices.
            ends: A list of ending indices. Must be the same length as starts.
            ignore_indices: A list of indices to exclude.

        Returns:
            A tuple containing two new lists: filtered_starts and filtered_ends.
            Returns empty lists if the input is invalid or if all ranges are filtered out.
            Prints error messages for invalid input.
            
        Examples:
            starts = [0, 5, 10]
            ends = [3, 7, 12]
            ignore_indices = [1, 2, 11, 17]
            
            # Output: 
                starts = [0, 3, 5, 10, 12]
                ends = [0, 3, 7, 10, 12]

        """

        if len(starts) != len(ends):
            print("Error: The 'starts' and 'ends' lists must have the same length.")
            return [], []

        filtered_starts = []
        filtered_ends = []

        for i in range(len(starts)):
            start = starts[i]
            end = ends[i]

            if end < start:
                print(f"Error: End index {end} is less than start index {start} at position {i}.")
                return [], []

            
            start_end = list(range(start, end + 1, 1))
            start_end = list(set(start_end) - set(ignore_indices))
            new_start, new_end = self.extract_sequences(start_end)
            filtered_starts.extend(new_start)
            filtered_ends.extend(new_end)

        return filtered_starts, filtered_ends

    def extract_sequences(self, numbers):
        if len(numbers) == 1:
            return [numbers[0]], [numbers[0]]
        
        numbers.sort()
        starts = []
        ends = []
        for i, number in enumerate(numbers):
            if i == 0:
                start = number
                end = number
                continue
            
            if number - 1 == numbers[i-1]:
                end = number
            else:
                starts.append(start)
                ends.append(end + 1)
                start = number
                end = number
        
            if i == len(numbers) - 1:
                starts.append(start)
                ends.append(end + 1)
        
        return starts, ends