Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,43 @@ import streamlit as st
|
|
| 2 |
import pdfplumber
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def process_pdf(file):
|
| 7 |
if file is None:
|
| 8 |
st.error("No file uploaded.")
|
| 9 |
return None
|
| 10 |
|
| 11 |
-
# Extract text from
|
| 12 |
with pdfplumber.open(file) as pdf:
|
| 13 |
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
| 14 |
|
| 15 |
-
# Extract transactions (Modify based on statement format)
|
| 16 |
lines = text.split("\n")
|
| 17 |
transactions = [line for line in lines if any(char.isdigit() for char in line)]
|
| 18 |
|
| 19 |
# Convert to DataFrame
|
| 20 |
df = pd.DataFrame([line.split()[:3] for line in transactions], columns=["Date", "Description", "Amount"])
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
categories = {
|
| 25 |
-
"Grocery": ["Walmart", "Kroger", "Whole Foods"],
|
| 26 |
-
"Dining": ["McDonald's", "Starbucks", "Chipotle"],
|
| 27 |
-
"Bills": ["Verizon", "AT&T", "Con Edison"],
|
| 28 |
-
"Entertainment": ["Netflix", "Spotify", "Amazon Prime"],
|
| 29 |
-
"Transport": ["Uber", "Lyft", "MetroCard"],
|
| 30 |
-
}
|
| 31 |
-
for category, keywords in categories.items():
|
| 32 |
-
if any(keyword in description for keyword in keywords):
|
| 33 |
-
return category
|
| 34 |
-
return "Other"
|
| 35 |
|
| 36 |
# Apply classification
|
| 37 |
df["Category"] = df["Description"].apply(classify_transaction)
|
|
@@ -40,17 +47,16 @@ def process_pdf(file):
|
|
| 40 |
|
| 41 |
# Streamlit UI
|
| 42 |
st.title("π Credit Card Statement Classifier")
|
| 43 |
-
st.write("Upload a PDF bank/credit card statement to categorize transactions.")
|
| 44 |
|
| 45 |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
|
| 46 |
|
| 47 |
if uploaded_file is not None:
|
| 48 |
-
st.success("File uploaded successfully!")
|
| 49 |
|
| 50 |
# Process and display transactions
|
| 51 |
df_result = process_pdf(uploaded_file)
|
| 52 |
|
| 53 |
if df_result is not None:
|
| 54 |
-
st.write("### Classified Transactions:")
|
| 55 |
st.dataframe(df_result) # Display table
|
| 56 |
-
|
|
|
|
| 2 |
import pdfplumber
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
+
# Function to classify transactions based on description
|
| 6 |
+
def classify_transaction(description):
|
| 7 |
+
if not isinstance(description, str): # Ensure description is a string
|
| 8 |
+
return "Unknown"
|
| 9 |
+
|
| 10 |
+
categories = {
|
| 11 |
+
"Grocery": ["Walmart", "Kroger", "Whole Foods"],
|
| 12 |
+
"Dining": ["McDonald's", "Starbucks", "Chipotle"],
|
| 13 |
+
"Bills": ["Verizon", "AT&T", "Con Edison"],
|
| 14 |
+
"Entertainment": ["Netflix", "Spotify", "Amazon Prime"],
|
| 15 |
+
"Transport": ["Uber", "Lyft", "MetroCard"],
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
for category, keywords in categories.items():
|
| 19 |
+
if any(keyword in description for keyword in keywords):
|
| 20 |
+
return category
|
| 21 |
+
return "Other"
|
| 22 |
+
|
| 23 |
+
# Function to process the uploaded PDF and classify transactions
|
| 24 |
def process_pdf(file):
|
| 25 |
if file is None:
|
| 26 |
st.error("No file uploaded.")
|
| 27 |
return None
|
| 28 |
|
| 29 |
+
# Extract text from PDF
|
| 30 |
with pdfplumber.open(file) as pdf:
|
| 31 |
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
| 32 |
|
| 33 |
+
# Extract transactions (Modify based on your statement format)
|
| 34 |
lines = text.split("\n")
|
| 35 |
transactions = [line for line in lines if any(char.isdigit() for char in line)]
|
| 36 |
|
| 37 |
# Convert to DataFrame
|
| 38 |
df = pd.DataFrame([line.split()[:3] for line in transactions], columns=["Date", "Description", "Amount"])
|
| 39 |
|
| 40 |
+
# Ensure no missing descriptions
|
| 41 |
+
df["Description"] = df["Description"].fillna("Unknown")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Apply classification
|
| 44 |
df["Category"] = df["Description"].apply(classify_transaction)
|
|
|
|
| 47 |
|
| 48 |
# Streamlit UI
|
| 49 |
st.title("π Credit Card Statement Classifier")
|
| 50 |
+
st.write("Upload a **PDF bank/credit card statement** to categorize transactions automatically.")
|
| 51 |
|
| 52 |
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
|
| 53 |
|
| 54 |
if uploaded_file is not None:
|
| 55 |
+
st.success("β
File uploaded successfully!")
|
| 56 |
|
| 57 |
# Process and display transactions
|
| 58 |
df_result = process_pdf(uploaded_file)
|
| 59 |
|
| 60 |
if df_result is not None:
|
| 61 |
+
st.write("### π Classified Transactions:")
|
| 62 |
st.dataframe(df_result) # Display table
|
|
|