File size: 1,617 Bytes
4938f65
de0992d
 
4938f65
de0992d
70c393b
 
de0992d
4938f65
de0992d
70c393b
de0992d
4938f65
de0992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4938f65
de0992d
86ec6d2
70c393b
 
de0992d
70c393b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
import pdfplumber
import pandas as pd

# Function to process PDF and classify transactions
def process_pdf(file_path):
    if file_path is None:
        return "No file uploaded."
    
    # Extract text from the uploaded PDF
    with pdfplumber.open(file_path) as pdf:
        text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])

    # Extract transactions (Modify based on statement format)
    lines = text.split("\n")
    transactions = [line for line in lines if any(char.isdigit() for char in line)]  

    # Convert to DataFrame
    df = pd.DataFrame([line.split()[:3] for line in transactions], columns=["Date", "Description", "Amount"])

    # Classification function (Modify as needed)
    def classify_transaction(description):
        categories = {
            "Grocery": ["Walmart", "Kroger", "Whole Foods"],
            "Dining": ["McDonald's", "Starbucks", "Chipotle"],
            "Bills": ["Verizon", "AT&T", "Con Edison"],
            "Entertainment": ["Netflix", "Spotify", "Amazon Prime"],
            "Transport": ["Uber", "Lyft", "MetroCard"],
        }
        for category, keywords in categories.items():
            if any(keyword in description for keyword in keywords):
                return category
        return "Other"

    # Apply classification
    df["Category"] = df["Description"].apply(classify_transaction)

    return df  # Display the table

# Fix: Use "filepath" instead of "file"
app = gr.Interface(fn=process_pdf, inputs=gr.File(type="filepath"), outputs="dataframe", title="Bank Statement Classifier")
app.launch()