Spaces:
Running
Running
File size: 2,929 Bytes
1e350c6 0f09deb 1e350c6 673c700 f9a94e1 1e350c6 f9a94e1 673c700 1e350c6 dc76dee e8b2b98 3128357 e8b2b98 1e350c6 f9a94e1 1e350c6 f9a94e1 1e350c6 f9a94e1 dc76dee 1e350c6 dc76dee 1e350c6 dc76dee 1e350c6 dc76dee f9a94e1 dc76dee 1e350c6 f9a94e1 dc76dee 1e350c6 dc76dee 1e350c6 0f09deb 1e350c6 f9a94e1 1e350c6 f9a94e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
import streamlit as st
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
import torch
# Debug: App started
st.write("App started.")
# Streamlit interface
st.title("Image to Video with Hugging Face")
st.write("Upload an image and provide a prompt to generate a video.")
# Debug: Waiting for user inputs
st.write("Waiting for image upload and prompt input...")
# File uploader for the input image
uploaded_file = st.file_uploader("Upload an image (JPG or PNG):", type=["jpg", "jpeg", "png"])
prompt = st.text_input("Enter your prompt:", "A little girl is riding a bicycle at high speed. Focused, detailed, realistic.")
# Cache migration step
st.write("Migrating the cache for model files...")
try:
from transformers.utils import move_cache
move_cache()
st.write("Cache migration completed successfully.")
except Exception as e:
st.error(f"Cache migration failed: {e}")
st.write("Proceeding without cache migration...")
if uploaded_file and prompt:
try:
st.write(f"Uploaded file: {uploaded_file.name}")
st.write(f"Prompt: {prompt}")
# Save uploaded file
st.write("Saving uploaded image...")
with open("uploaded_image.jpg", "wb") as f:
f.write(uploaded_file.read())
st.write("Uploaded image saved successfully.")
# Load the image
st.write("Loading image...")
image = load_image("uploaded_image.jpg")
st.write("Image loaded successfully.")
# Initialize the pipeline
st.write("Initializing the pipeline...")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX1.5-5B-I2V",
torch_dtype=torch.bfloat16,
cache_dir="./huggingface_cache",
force_download=True
)
st.write("Pipeline initialized successfully.")
# Enable optimizations
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
# Generate video
st.write("Generating video... This may take a while.")
video_frames = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=81,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
st.write("Video generated successfully.")
# Export video
st.write("Exporting video...")
video_path = "output.mp4"
export_to_video(video_frames, video_path, fps=8)
st.write("Video exported successfully.")
# Display video
st.video(video_path)
except Exception as e:
st.error(f"An error occurred: {e}")
st.write(f"Debug info: {e}")
else:
st.write("Please upload an image and provide a prompt to get started.")
|