Paula Leonova
commited on
Commit
·
bd0c13f
1
Parent(s):
42ea8fa
Add section comment headers for easer code navigation
Browse files
app.py
CHANGED
@@ -18,12 +18,20 @@ ex_long_text = example_long_text_load()
|
|
18 |
|
19 |
|
20 |
# if __name__ == '__main__':
|
|
|
|
|
|
|
21 |
st.markdown("### Long Text Summarization & Multi-Label Classification")
|
22 |
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).")
|
23 |
st.write("__Inputs__: User enters their own custom text(s) and labels.")
|
24 |
st.write("__Outputs__: A summary of the text, likelihood match score for each label and a downloadable csv of the results. \
|
25 |
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
example_button = st.button(label='See Example')
|
28 |
if example_button:
|
29 |
example_text = ex_long_text #ex_text
|
@@ -38,7 +46,11 @@ else:
|
|
38 |
title_name = 'Submitted Text'
|
39 |
|
40 |
|
|
|
41 |
with st.form(key='my_form'):
|
|
|
|
|
|
|
42 |
st.markdown("##### Step 1: Upload Text")
|
43 |
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text)
|
44 |
|
@@ -67,7 +79,9 @@ with st.form(key='my_form'):
|
|
67 |
('Yes', 'No')
|
68 |
)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
st.markdown("##### Step 2: Enter Labels")
|
72 |
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000)
|
73 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
@@ -77,7 +91,9 @@ with st.form(key='my_form'):
|
|
77 |
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
|
78 |
key='labels_uploader')
|
79 |
|
80 |
-
|
|
|
|
|
81 |
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
|
82 |
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
|
83 |
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
|
@@ -94,7 +110,6 @@ with st.form(key='my_form'):
|
|
94 |
key = 'multitext_glabels_uploader')
|
95 |
|
96 |
|
97 |
-
|
98 |
# threshold_value = st.slider(
|
99 |
# 'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
|
100 |
# 0.0, 1.0, (0.5))
|
@@ -103,6 +118,10 @@ with st.form(key='my_form'):
|
|
103 |
|
104 |
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_")
|
105 |
|
|
|
|
|
|
|
|
|
106 |
with st.spinner('Loading pretrained models...'):
|
107 |
start = time.time()
|
108 |
summarizer = md.load_summary_model()
|
@@ -119,7 +138,11 @@ with st.spinner('Loading pretrained models...'):
|
|
119 |
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.')
|
120 |
# st.success(None)
|
121 |
|
|
|
122 |
if submit_button or example_button:
|
|
|
|
|
|
|
123 |
if len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None:
|
124 |
st.error("Enter some text to generate a summary")
|
125 |
else:
|
@@ -157,6 +180,10 @@ if submit_button or example_button:
|
|
157 |
else:
|
158 |
title_element = ['title']
|
159 |
|
|
|
|
|
|
|
|
|
160 |
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'):
|
161 |
# For each body of text, create text chunks of a certain token size required for the transformer
|
162 |
|
@@ -172,6 +199,10 @@ if submit_button or example_button:
|
|
172 |
title_entry = text_df['title'][i]
|
173 |
text_chunks_lib[title_entry] = text_chunks
|
174 |
|
|
|
|
|
|
|
|
|
175 |
if gen_keywords == 'Yes':
|
176 |
st.markdown("### Top Keywords")
|
177 |
with st.spinner("Generating keywords from text..."):
|
@@ -201,7 +232,9 @@ if submit_button or example_button:
|
|
201 |
)
|
202 |
|
203 |
|
204 |
-
|
|
|
|
|
205 |
if gen_summary == 'Yes':
|
206 |
st.markdown("### Summary")
|
207 |
with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'):
|
@@ -235,6 +268,9 @@ if submit_button or example_button:
|
|
235 |
mime='title_summary/csv',
|
236 |
)
|
237 |
|
|
|
|
|
|
|
238 |
if ((len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None)
|
239 |
or (len(labels) == 0 and uploaded_labels_file is None)):
|
240 |
st.error('Enter some text and at least one possible topic to see label predictions.')
|
@@ -281,6 +317,9 @@ if submit_button or example_button:
|
|
281 |
else:
|
282 |
label_match_df = labels_full_df.copy()
|
283 |
|
|
|
|
|
|
|
284 |
if len(glabels) > 0:
|
285 |
gdata = pd.DataFrame({'label': glabels})
|
286 |
join_list = ['label']
|
@@ -322,4 +361,4 @@ if submit_button or example_button:
|
|
322 |
# st.dataframe(df_report)
|
323 |
|
324 |
st.success('All done!')
|
325 |
-
st.balloons()
|
|
|
18 |
|
19 |
|
20 |
# if __name__ == '__main__':
|
21 |
+
###################################
|
22 |
+
######## App Description ##########
|
23 |
+
###################################
|
24 |
st.markdown("### Long Text Summarization & Multi-Label Classification")
|
25 |
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).")
|
26 |
st.write("__Inputs__: User enters their own custom text(s) and labels.")
|
27 |
st.write("__Outputs__: A summary of the text, likelihood match score for each label and a downloadable csv of the results. \
|
28 |
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
|
29 |
|
30 |
+
|
31 |
+
|
32 |
+
###################################
|
33 |
+
######## Example Input ##########
|
34 |
+
###################################
|
35 |
example_button = st.button(label='See Example')
|
36 |
if example_button:
|
37 |
example_text = ex_long_text #ex_text
|
|
|
46 |
title_name = 'Submitted Text'
|
47 |
|
48 |
|
49 |
+
|
50 |
with st.form(key='my_form'):
|
51 |
+
###################################
|
52 |
+
######## Form: Step 1 ##########
|
53 |
+
###################################
|
54 |
st.markdown("##### Step 1: Upload Text")
|
55 |
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text)
|
56 |
|
|
|
79 |
('Yes', 'No')
|
80 |
)
|
81 |
|
82 |
+
###################################
|
83 |
+
######## Form: Step 2 ##########
|
84 |
+
###################################
|
85 |
st.markdown("##### Step 2: Enter Labels")
|
86 |
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000)
|
87 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
|
|
91 |
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
|
92 |
key='labels_uploader')
|
93 |
|
94 |
+
###################################
|
95 |
+
######## Form: Step 3 ##########
|
96 |
+
###################################
|
97 |
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
|
98 |
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
|
99 |
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
|
|
|
110 |
key = 'multitext_glabels_uploader')
|
111 |
|
112 |
|
|
|
113 |
# threshold_value = st.slider(
|
114 |
# 'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
|
115 |
# 0.0, 1.0, (0.5))
|
|
|
118 |
|
119 |
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_")
|
120 |
|
121 |
+
|
122 |
+
###################################
|
123 |
+
####### Model Load Time #########
|
124 |
+
###################################
|
125 |
with st.spinner('Loading pretrained models...'):
|
126 |
start = time.time()
|
127 |
summarizer = md.load_summary_model()
|
|
|
138 |
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.')
|
139 |
# st.success(None)
|
140 |
|
141 |
+
|
142 |
if submit_button or example_button:
|
143 |
+
###################################
|
144 |
+
######## Load Text Data #######
|
145 |
+
###################################
|
146 |
if len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None:
|
147 |
st.error("Enter some text to generate a summary")
|
148 |
else:
|
|
|
180 |
else:
|
181 |
title_element = ['title']
|
182 |
|
183 |
+
|
184 |
+
###################################
|
185 |
+
######## Text Chunks ##########
|
186 |
+
###################################
|
187 |
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'):
|
188 |
# For each body of text, create text chunks of a certain token size required for the transformer
|
189 |
|
|
|
199 |
title_entry = text_df['title'][i]
|
200 |
text_chunks_lib[title_entry] = text_chunks
|
201 |
|
202 |
+
|
203 |
+
################################
|
204 |
+
######## Keywords ##########
|
205 |
+
################################
|
206 |
if gen_keywords == 'Yes':
|
207 |
st.markdown("### Top Keywords")
|
208 |
with st.spinner("Generating keywords from text..."):
|
|
|
232 |
)
|
233 |
|
234 |
|
235 |
+
###################################
|
236 |
+
########## Summarize ##########
|
237 |
+
###################################
|
238 |
if gen_summary == 'Yes':
|
239 |
st.markdown("### Summary")
|
240 |
with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'):
|
|
|
268 |
mime='title_summary/csv',
|
269 |
)
|
270 |
|
271 |
+
###################################
|
272 |
+
########## Classifier #########
|
273 |
+
###################################
|
274 |
if ((len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None)
|
275 |
or (len(labels) == 0 and uploaded_labels_file is None)):
|
276 |
st.error('Enter some text and at least one possible topic to see label predictions.')
|
|
|
317 |
else:
|
318 |
label_match_df = labels_full_df.copy()
|
319 |
|
320 |
+
###################################
|
321 |
+
####### Ground Truth Labels ######
|
322 |
+
###################################
|
323 |
if len(glabels) > 0:
|
324 |
gdata = pd.DataFrame({'label': glabels})
|
325 |
join_list = ['label']
|
|
|
361 |
# st.dataframe(df_report)
|
362 |
|
363 |
st.success('All done!')
|
364 |
+
st.balloons()
|