Paula Leonova
commited on
Commit
·
9947e0d
1
Parent(s):
79d9303
Add progress spinners
Browse files
app.py
CHANGED
@@ -31,6 +31,7 @@ with st.form(key='my_form'):
|
|
31 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
32 |
submit_button = st.form_submit_button(label='Submit')
|
33 |
|
|
|
34 |
summarizer = load_summary_model()
|
35 |
classifier = load_model()
|
36 |
|
@@ -38,6 +39,7 @@ if submit_button:
|
|
38 |
if len(labels) == 0:
|
39 |
st.write('Enter some text and at least one possible topic to see predictions.')
|
40 |
|
|
|
41 |
# For each body of text, create text chunks of a certain token size required for the transformer
|
42 |
nested_sentences = create_nest_sentences(document = text_input, token_max_length = 1024)
|
43 |
|
@@ -63,6 +65,7 @@ if submit_button:
|
|
63 |
st.markdown("### Combined Summary")
|
64 |
st.markdown(final_summary)
|
65 |
|
|
|
66 |
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
|
67 |
# st.markdown("### Top Label Predictions: Combined Summary")
|
68 |
# plot_result(topics[::-1][:], scores[::-1][:])
|
@@ -79,6 +82,7 @@ if submit_button:
|
|
79 |
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
|
80 |
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
|
81 |
|
|
|
82 |
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
|
83 |
data2 = pd.merge(data, data_ex_text, on = ['label'])
|
84 |
st.markdown("### Data Table")
|
@@ -89,3 +93,5 @@ if submit_button:
|
|
89 |
unsafe_allow_html = True
|
90 |
)
|
91 |
st.dataframe(data2)
|
|
|
|
|
|
31 |
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
32 |
submit_button = st.form_submit_button(label='Submit')
|
33 |
|
34 |
+
|
35 |
summarizer = load_summary_model()
|
36 |
classifier = load_model()
|
37 |
|
|
|
39 |
if len(labels) == 0:
|
40 |
st.write('Enter some text and at least one possible topic to see predictions.')
|
41 |
|
42 |
+
with st.spinner('Generating partial summaries...')
|
43 |
# For each body of text, create text chunks of a certain token size required for the transformer
|
44 |
nested_sentences = create_nest_sentences(document = text_input, token_max_length = 1024)
|
45 |
|
|
|
65 |
st.markdown("### Combined Summary")
|
66 |
st.markdown(final_summary)
|
67 |
|
68 |
+
with st.spinner('Matching labels to text...')
|
69 |
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
|
70 |
# st.markdown("### Top Label Predictions: Combined Summary")
|
71 |
# plot_result(topics[::-1][:], scores[::-1][:])
|
|
|
82 |
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
|
83 |
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
|
84 |
|
85 |
+
with st.spinner('Creating a download link...')
|
86 |
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
|
87 |
data2 = pd.merge(data, data_ex_text, on = ['label'])
|
88 |
st.markdown("### Data Table")
|
|
|
93 |
unsafe_allow_html = True
|
94 |
)
|
95 |
st.dataframe(data2)
|
96 |
+
|
97 |
+
st.success('All Done!')
|