Spaces:
Running
Running
| """ | |
| Modified version from codeformer-pip project | |
| S-Lab License 1.0 | |
| Copyright 2022 S-Lab | |
| https://github.com/kadirnar/codeformer-pip/blob/main/LICENSE | |
| """ | |
| import os | |
| import cv2 | |
| import torch | |
| from codeformer.facelib.detection import init_detection_model | |
| from codeformer.facelib.parsing import init_parsing_model | |
| from torchvision.transforms.functional import normalize | |
| from codeformer.basicsr.archs.rrdbnet_arch import RRDBNet | |
| from codeformer.basicsr.utils import img2tensor, imwrite, tensor2img | |
| from codeformer.basicsr.utils.download_util import load_file_from_url | |
| from codeformer.basicsr.utils.realesrgan_utils import RealESRGANer | |
| from codeformer.basicsr.utils.registry import ARCH_REGISTRY | |
| from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper | |
| from codeformer.facelib.utils.misc import is_gray | |
| import threading | |
| from plugins.codeformer_face_helper_cv2 import FaceRestoreHelperOptimized | |
| THREAD_LOCK_FACE_HELPER = threading.Lock() | |
| THREAD_LOCK_FACE_HELPER_CREATE = threading.Lock() | |
| THREAD_LOCK_FACE_HELPER_PROCERSSING = threading.Lock() | |
| THREAD_LOCK_CODEFORMER_NET = threading.Lock() | |
| THREAD_LOCK_CODEFORMER_NET_CREATE = threading.Lock() | |
| THREAD_LOCK_BGUPSAMPLER = threading.Lock() | |
| pretrain_model_url = { | |
| "codeformer": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth", | |
| "detection": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth", | |
| "parsing": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth", | |
| "realesrgan": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", | |
| } | |
| # download weights | |
| if not os.path.exists("models/CodeFormer/codeformer.pth"): | |
| load_file_from_url( | |
| url=pretrain_model_url["codeformer"], model_dir="models/CodeFormer/", progress=True, file_name=None | |
| ) | |
| if not os.path.exists("models/CodeFormer/facelib/detection_Resnet50_Final.pth"): | |
| load_file_from_url( | |
| url=pretrain_model_url["detection"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None | |
| ) | |
| if not os.path.exists("models/CodeFormer/facelib/parsing_parsenet.pth"): | |
| load_file_from_url( | |
| url=pretrain_model_url["parsing"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None | |
| ) | |
| if not os.path.exists("models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth"): | |
| load_file_from_url( | |
| url=pretrain_model_url["realesrgan"], model_dir="models/CodeFormer/realesrgan", progress=True, file_name=None | |
| ) | |
| def imread(img_path): | |
| img = cv2.imread(img_path) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| return img | |
| # set enhancer with RealESRGAN | |
| def set_realesrgan(): | |
| half = True if torch.cuda.is_available() else False | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=2, | |
| ) | |
| upsampler = RealESRGANer( | |
| scale=2, | |
| model_path="models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth", | |
| model=model, | |
| tile=400, | |
| tile_pad=40, | |
| pre_pad=0, | |
| half=half, | |
| ) | |
| return upsampler | |
| upsampler = set_realesrgan() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| codeformers_cache = [] | |
| def get_codeformer(): | |
| if len(codeformers_cache) > 0: | |
| with THREAD_LOCK_CODEFORMER_NET: | |
| if len(codeformers_cache) > 0: | |
| return codeformers_cache.pop() | |
| with THREAD_LOCK_CODEFORMER_NET_CREATE: | |
| codeformer_net = ARCH_REGISTRY.get("CodeFormer")( | |
| dim_embd=512, | |
| codebook_size=1024, | |
| n_head=8, | |
| n_layers=9, | |
| connect_list=["32", "64", "128", "256"], | |
| ).to(device) | |
| ckpt_path = "models/CodeFormer/codeformer.pth" | |
| checkpoint = torch.load(ckpt_path)["params_ema"] | |
| codeformer_net.load_state_dict(checkpoint) | |
| codeformer_net.eval() | |
| return codeformer_net | |
| def release_codeformer(codeformer): | |
| with THREAD_LOCK_CODEFORMER_NET: | |
| codeformers_cache.append(codeformer) | |
| #os.makedirs("output", exist_ok=True) | |
| # ------- face restore thread cache ---------- | |
| face_restore_helper_cache = [] | |
| detection_model = "retinaface_resnet50" | |
| inited_face_restore_helper_nn = False | |
| import time | |
| def get_face_restore_helper(upscale): | |
| global inited_face_restore_helper_nn | |
| with THREAD_LOCK_FACE_HELPER: | |
| face_helper = FaceRestoreHelperOptimized( | |
| upscale, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model=detection_model, | |
| save_ext="png", | |
| use_parse=True, | |
| device=device, | |
| ) | |
| #return face_helper | |
| if inited_face_restore_helper_nn: | |
| while len(face_restore_helper_cache) == 0: | |
| time.sleep(0.05) | |
| face_detector, face_parse = face_restore_helper_cache.pop() | |
| face_helper.face_detector = face_detector | |
| face_helper.face_parse = face_parse | |
| return face_helper | |
| else: | |
| inited_face_restore_helper_nn = True | |
| face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) | |
| face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) | |
| return face_helper | |
| def get_face_restore_helper2(upscale): # still not work well!!! | |
| face_helper = FaceRestoreHelperOptimized( | |
| upscale, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model=detection_model, | |
| save_ext="png", | |
| use_parse=True, | |
| device=device, | |
| ) | |
| #return face_helper | |
| if len(face_restore_helper_cache) > 0: | |
| with THREAD_LOCK_FACE_HELPER: | |
| if len(face_restore_helper_cache) > 0: | |
| face_detector, face_parse = face_restore_helper_cache.pop() | |
| face_helper.face_detector = face_detector | |
| face_helper.face_parse = face_parse | |
| return face_helper | |
| with THREAD_LOCK_FACE_HELPER_CREATE: | |
| face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) | |
| face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) | |
| return face_helper | |
| def release_face_restore_helper(face_helper): | |
| #return | |
| #with THREAD_LOCK_FACE_HELPER: | |
| face_restore_helper_cache.append((face_helper.face_detector, face_helper.face_parse)) | |
| #pass | |
| def inference_app(image, background_enhance, face_upsample, upscale, codeformer_fidelity, skip_if_no_face = False): | |
| # take the default setting for the demo | |
| has_aligned = False | |
| only_center_face = False | |
| draw_box = False | |
| #print("Inp:", image, background_enhance, face_upsample, upscale, codeformer_fidelity) | |
| if isinstance(image, str): | |
| img = cv2.imread(str(image), cv2.IMREAD_COLOR) | |
| else: | |
| img = image | |
| #print("\timage size:", img.shape) | |
| upscale = int(upscale) # convert type to int | |
| if upscale > 4: # avoid memory exceeded due to too large upscale | |
| upscale = 4 | |
| if upscale > 2 and max(img.shape[:2]) > 1000: # avoid memory exceeded due to too large img resolution | |
| upscale = 2 | |
| if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution | |
| upscale = 1 | |
| background_enhance = False | |
| #face_upsample = False | |
| face_helper = get_face_restore_helper(upscale) | |
| bg_upsampler = upsampler if background_enhance else None | |
| face_upsampler = upsampler if face_upsample else None | |
| if has_aligned: | |
| # the input faces are already cropped and aligned | |
| img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
| face_helper.is_gray = is_gray(img, threshold=5) | |
| if face_helper.is_gray: | |
| print("\tgrayscale input: True") | |
| face_helper.cropped_faces = [img] | |
| else: | |
| with THREAD_LOCK_FACE_HELPER_PROCERSSING: | |
| face_helper.read_image(img) | |
| # get face landmarks for each face | |
| num_det_faces = face_helper.get_face_landmarks_5( | |
| only_center_face=only_center_face, resize=640, eye_dist_threshold=5 | |
| ) | |
| #print(f"\tdetect {num_det_faces} faces") | |
| if num_det_faces == 0 and skip_if_no_face: | |
| release_face_restore_helper(face_helper) | |
| return img | |
| # align and warp each face | |
| face_helper.align_warp_face() | |
| # face restoration for each cropped face | |
| for idx, cropped_face in enumerate(face_helper.cropped_faces): | |
| # prepare data | |
| cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True) | |
| normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
| cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
| codeformer_net = get_codeformer() | |
| try: | |
| with torch.no_grad(): | |
| output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0] | |
| restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
| del output | |
| except RuntimeError as error: | |
| print(f"Failed inference for CodeFormer: {error}") | |
| restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
| release_codeformer(codeformer_net) | |
| restored_face = restored_face.astype("uint8") | |
| face_helper.add_restored_face(restored_face) | |
| # paste_back | |
| if not has_aligned: | |
| # upsample the background | |
| if bg_upsampler is not None: | |
| with THREAD_LOCK_BGUPSAMPLER: | |
| # Now only support RealESRGAN for upsampling background | |
| bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] | |
| else: | |
| bg_img = None | |
| face_helper.get_inverse_affine(None) | |
| # paste each restored face to the input image | |
| if face_upsample and face_upsampler is not None: | |
| restored_img = face_helper.paste_faces_to_input_image( | |
| upsample_img=bg_img, | |
| draw_box=draw_box, | |
| face_upsampler=face_upsampler, | |
| ) | |
| else: | |
| restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box) | |
| if image.shape != restored_img.shape: | |
| h, w, _ = image.shape | |
| restored_img = cv2.resize(restored_img, (w, h), interpolation=cv2.INTER_LINEAR) | |
| release_face_restore_helper(face_helper) | |
| # save restored img | |
| if isinstance(image, str): | |
| save_path = f"output/out.png" | |
| imwrite(restored_img, str(save_path)) | |
| return save_path | |
| else: | |
| return restored_img | |