Spaces:
Sleeping
Sleeping
added application
Browse files- app.py +94 -0
- encoder.npy +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import ViTForImageClassification, ViTModel, ViTImageProcessor
|
5 |
+
from PIL import Image
|
6 |
+
import PIL
|
7 |
+
import io
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
+
import json
|
10 |
+
|
11 |
+
def greet(name):
|
12 |
+
return "Hello " + name + "!!"
|
13 |
+
|
14 |
+
|
15 |
+
async def test2(file, top_k: int = 5):
|
16 |
+
# extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
|
17 |
+
|
18 |
+
# if not extension:
|
19 |
+
# return "Image format must be jpg, jpeg, or png!"
|
20 |
+
# # Read image contents
|
21 |
+
# contents = await file.read()
|
22 |
+
|
23 |
+
# Preprocess image
|
24 |
+
# image_tensor = preprocess_image(contents)
|
25 |
+
image_tensor = preprocess_image(file)
|
26 |
+
|
27 |
+
# Make predictions
|
28 |
+
predictions = predict(image_tensor, top_k)
|
29 |
+
|
30 |
+
item = {"predictions": predictions}
|
31 |
+
return json.dumps(item)
|
32 |
+
|
33 |
+
encoder = LabelEncoder()
|
34 |
+
encoder.classes_ = np.load('encoder.npy', allow_pickle=True)
|
35 |
+
|
36 |
+
pretrained_model = ViTModel.from_pretrained('pillIdentifierAI/pillIdentifier')
|
37 |
+
feature_extractor = ViTImageProcessor(
|
38 |
+
image_size=224,
|
39 |
+
do_resize=True,
|
40 |
+
do_normalize=True,
|
41 |
+
do_rescale=False,
|
42 |
+
image_mean=[0.5, 0.5, 0.5],
|
43 |
+
image_std=[0.5, 0.5, 0.5],
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
config = pretrained_model.config
|
48 |
+
config.num_labels = 2112 # Change this to the appropriate number of classes
|
49 |
+
model = ViTForImageClassification(config)
|
50 |
+
model.vit = pretrained_model
|
51 |
+
|
52 |
+
model.eval()
|
53 |
+
|
54 |
+
# def preprocess_image(contents):
|
55 |
+
def preprocess_image(image):
|
56 |
+
# Convert image bytes to PIL Image
|
57 |
+
# image = Image.open(io.BytesIO(contents))
|
58 |
+
image = Image.fromarray(np.uint8(image))
|
59 |
+
if image.mode != 'RGB':
|
60 |
+
image = image.convert('RGB')
|
61 |
+
|
62 |
+
# Use the feature extractor directly
|
63 |
+
inputs = feature_extractor(images=[image])
|
64 |
+
image_tensor = inputs['pixel_values'][0]
|
65 |
+
|
66 |
+
# Convert to tensor
|
67 |
+
image_tensor = torch.tensor(image_tensor, dtype=torch.float32)
|
68 |
+
|
69 |
+
return image_tensor
|
70 |
+
|
71 |
+
def predict(image_tensor, top_k=5):
|
72 |
+
# Ensure the model is in evaluation mode
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
# Make prediction
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = model(pixel_values=image_tensor.unsqueeze(0)) # Add batch dimension
|
78 |
+
logits = outputs.logits.numpy()
|
79 |
+
|
80 |
+
# Get top k predictions and their probabilities
|
81 |
+
predictions = np.argsort(logits, axis=1)[:, ::-1][:, :top_k]
|
82 |
+
probabilities = np.sort(logits, axis=1)[:, ::-1][:, :top_k]
|
83 |
+
|
84 |
+
# Decode predictions using the label encoder and create the result dictionary
|
85 |
+
result = {}
|
86 |
+
for i in range(top_k):
|
87 |
+
class_name = encoder.inverse_transform([predictions[0][i]])[0]
|
88 |
+
probability = probabilities[0][i]
|
89 |
+
result[i + 1] = {'label': str(class_name), 'probability': float(probability)}
|
90 |
+
|
91 |
+
return result
|
92 |
+
|
93 |
+
iface = gr.Interface(fn=test2, inputs="image", outputs="text")
|
94 |
+
iface.launch(share=True)
|
encoder.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccc6049f9944c2b553cd74ff33bd35525f86e2dcb920ecd985f58c549830ea3b
|
3 |
+
size 130192
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
tensorflow
|
4 |
+
numpy
|
5 |
+
scikit-learn
|
6 |
+
pillow
|
7 |
+
python-multipart
|