File size: 7,487 Bytes
02c2d7e
 
 
c700823
02c2d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c700823
02c2d7e
c700823
 
 
ab15c62
 
 
02c2d7e
 
 
 
c700823
 
02c2d7e
ab15c62
 
 
02c2d7e
c700823
02c2d7e
c700823
ab15c62
 
 
02c2d7e
c700823
 
 
c718eb8
c700823
 
02c2d7e
c700823
02c2d7e
 
c700823
 
 
02c2d7e
c700823
 
 
02c2d7e
 
 
 
c700823
02c2d7e
c700823
02c2d7e
 
 
 
c700823
 
ab15c62
 
 
c700823
 
 
 
 
 
 
 
 
ab15c62
c700823
 
ab15c62
c700823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c2d7e
c700823
02c2d7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import re
import string
from collections import OrderedDict
from typing import Callable, List, Optional, Tuple

import numpy as np
import pandas as pd
import spacy
import streamlit as st
from pandas.core.series import Series
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from stqdm import stqdm
from textacy.preprocessing import make_pipeline, normalize, remove, replace

from .configs import Languages

stqdm.pandas()


def encode(text: pd.Series, labels: pd.Series):
    """
    Encodes text in mathematical object ameanable to training algorithm
    """
    tfidf_vectorizer = TfidfVectorizer(
        input="content",  # default: file already in memory
        encoding="utf-8",  # default
        decode_error="strict",  # default
        strip_accents=None,  # do nothing
        lowercase=False,  # do nothing
        preprocessor=None,  # do nothing - default
        tokenizer=None,  # default
        stop_words=None,  # do nothing
        analyzer="word",
        ngram_range=(1, 3),  # maximum 3-ngrams
        min_df=0.001,
        max_df=0.75,
        sublinear_tf=True,
    )
    label_encoder = LabelEncoder()

    with st.spinner("Encoding text using TF-IDF and Encoding labels"):
        X = tfidf_vectorizer.fit_transform(text.values)
        y = label_encoder.fit_transform(labels.values)

    return {
        "X": X,
        "y": y,
        "X_names": np.array(tfidf_vectorizer.get_feature_names()),
        "y_names": label_encoder.classes_,
    }


# more [here](https://github.com/fastai/fastai/blob/master/fastai/text/core.py#L42)
# and [here](https://textacy.readthedocs.io/en/latest/api_reference/preprocessing.html)
# fmt: off
_re_normalize_acronyms = re.compile(r"(?:[a-zA-Z]\.){2,}")
def normalize_acronyms(t):
    return _re_normalize_acronyms.sub(t.translate(str.maketrans("", "", string.punctuation)).upper(), t)


_re_non_word = re.compile(r"\W")
def remove_non_word(t):
    return _re_non_word.sub(" ", t)


_re_space = re.compile(r" {2,}")
def normalize_useless_spaces(t):
    return _re_space.sub(" ", t)


_re_rep = re.compile(r"(\S)(\1{2,})")
def normalize_repeating_chars(t):
    def _replace_rep(m):
        c, cc = m.groups()
        return c

    return _re_rep.sub(_replace_rep, t)


_re_wrep = re.compile(r"(?:\s|^)(\w+)\s+((?:\1\s+)+)\1(\s|\W|$)")
def normalize_repeating_words(t):
    def _replace_wrep(m):
        c, cc, e = m.groups()
        return c

    return _re_wrep.sub(_replace_wrep, t)


# fmt: on
class Lemmatizer:
    """Creates lemmatizer based on spacy"""

    def __init__(
        self, language: str, remove_stop: bool = True, lemmatization: bool = True
    ) -> None:
        self.language = language
        self.nlp = spacy.load(
            Languages[language].value, exclude=["parser", "ner", "pos", "tok2vec"]
        )
        self._lemmatizer_fn = self._get_lemmatization_fn(remove_stop, lemmatization)
        self.lemmatization = lemmatization

    def _get_lemmatization_fn(
        self, remove_stop: bool, lemmatization: bool
    ) -> Optional[Callable]:
        """Return the correct spacy Doc-level lemmatizer"""
        if remove_stop and lemmatization:

            def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
                return " ".join(
                    [t.lemma_ for t in doc if t.lemma_ != "-PRON-" and not t.is_stop]
                )

        elif remove_stop and not lemmatization:

            def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
                return " ".join([t.text for t in doc if not t.is_stop])

        elif lemmatization and not remove_stop:

            def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
                return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-"])

        else:
            self.status = False
            return

        return lemmatizer_fn

    def __call__(self, series: Series) -> Series:
        """
        Apply spacy pipeline to transform string to spacy Doc and applies lemmatization
        """
        res = []
        pbar = stqdm(total=len(series), desc="Lemmatizing")
        for doc in self.nlp.pipe(series, batch_size=500):
            res.append(self._lemmatizer_fn(doc))
            pbar.update(1)
        pbar.close()
        return pd.Series(res)


class PreprocessingPipeline:
    def __init__(
        self, pre_steps: List[str], lemmatizer: Lemmatizer, post_steps: List[str]
    ):

        # build pipeline
        self.pre_pipeline, self.lemmatizer, self.post_pipeline = self.make_pipeline(
            pre_steps, lemmatizer, post_steps
        )

    def __call__(self, series: Series) -> Series:
        with st.spinner("Pre-lemmatization cleaning"):
            res = series.progress_map(self.pre_pipeline)

        with st.spinner("Lemmatizing"):
            res = self.lemmatizer(series)

        with st.spinner("Post-lemmatization cleaning"):
            res = series.progress_map(self.post_pipeline)

        return res

    def make_pipeline(
        self, pre_steps: List[str], lemmatizer: Lemmatizer, post_steps: List[str]
    ) -> Tuple[Callable]:

        # pre-lemmatization steps
        pre_steps = [
            self.pipeline_components()[step]
            for step in pre_steps
            if step in self.pipeline_components()
        ]
        pre_steps = make_pipeline(*pre_steps) if pre_steps else lambda x: x

        # lemmatization
        lemmatizer = lemmatizer if lemmatizer.lemmatization else lambda x: x

        # post lemmatization steps
        post_steps = [
            self.pipeline_components()[step]
            for step in post_steps
            if step in self.pipeline_components()
        ]
        post_steps = make_pipeline(*post_steps) if post_steps else lambda x: x

        return pre_steps, lemmatizer, post_steps

    @staticmethod
    def pipeline_components() -> "OrderedDict[str, Callable]":
        """Returns available cleaning steps in order"""
        return OrderedDict(
            [
                ("lower", lambda x: x.lower()),
                ("normalize_unicode", normalize.unicode),
                ("normalize_bullet_points", normalize.bullet_points),
                ("normalize_hyphenated_words", normalize.hyphenated_words),
                ("normalize_quotation_marks", normalize.quotation_marks),
                ("normalize_whitespace", normalize.whitespace),
                ("replace_urls", replace.urls),
                ("replace_currency_symbols", replace.currency_symbols),
                ("replace_emails", replace.emails),
                ("replace_emojis", replace.emojis),
                ("replace_hashtags", replace.hashtags),
                ("replace_numbers", replace.numbers),
                ("replace_phone_numbers", replace.phone_numbers),
                ("replace_user_handles", replace.user_handles),
                ("normalize_acronyms", normalize_acronyms),
                ("remove_accents", remove.accents),
                ("remove_brackets", remove.brackets),
                ("remove_html_tags", remove.html_tags),
                ("remove_punctuation", remove.punctuation),
                ("remove_non_words", remove_non_word),
                ("normalize_useless_spaces", normalize_useless_spaces),
                ("normalize_repeating_chars", normalize_repeating_chars),
                ("normalize_repeating_words", normalize_repeating_words),
                ("strip", lambda x: x.strip()),
            ]
        )