import gradio as gr import openai import base64 import io from PIL import Image import fitz # PyMuPDF import os # Load API key openai.api_key = os.getenv("OPENAI_API_KEY") # Prompt for extraction prompt = """ You are analyzing a medical document or an application form from a patient. Extract the following fields as JSON: - Position applied for - Office/Ministry - Duty station - First name(s) - Surname - Date of birth - Gender - Citizenship - Postal Address - Residential Address - Email - Phone number (mobile) """ def process_pdf(pdf_file): # pdf_file is already bytes when using gr.File(type="binary") doc = fitz.open(stream=pdf_file, filetype="pdf") results = [] for page_num in range(len(doc)): page = doc.load_page(page_num) pix = page.get_pixmap(dpi=200) # Use 150-200 DPI for balance # Convert to PIL Image image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # Convert to base64 JPEG buffered = io.BytesIO() image.save(buffered, format="JPEG") base64_image = base64.b64encode(buffered.getvalue()).decode() # Send to GPT-4o response = openai.chat.completions.create( model="gpt-4o", messages=[ {"role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} ]} ], max_tokens=1000 ) results.append(response.choices[0].message.content.strip()) return "\n\n---\n\n".join(results) # Gradio UI demo = gr.Interface( fn=process_pdf, inputs=gr.File(type="binary", label="Upload PDF Form"), outputs="textbox", title="Healthelic Form Data Extractor (PDF Scanner) - OpenAI GPT-4o", description="Upload a scanned medical form in PDF format to extract key fields using GPT-4o vision model." ) if __name__ == "__main__": demo.launch()