import gradio as gr import google.generativeai as genai import base64 import io from PIL import Image import os import json # Configure Google Cloud credentials (replace with your actual API key or setup) genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Select the Gemini Pro Vision model model = genai.GenerativeModel('gemini-1.5-flash') # Prompt definition prompt = """ You are analyzing a medical document or an application form from patient. Extract the following fields as JSON: - Position applied for - Office/Ministry - Duty station - First name(s) - Surname - Date of birth - Gender - Citizenship - Postal Address - Residential Address - Email - Phone number (mobile) """ def process_image(image: Image.Image): buffered = io.BytesIO() image.save(buffered, format="JPEG") base64_image = buffered.getvalue() response = model.generate_content([ prompt, { "mime_type": "image/jpeg", "data": base64_image } ]) return response.text # Gradio interface demo = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs="textbox", title="Healthelic Form Data Extractor (Doc Scanner) - Gemini 1.5-flash", description="Upload a scanned medical form to extract key fields." ) if __name__ == "__main__": demo.launch()