Spaces:
Running
Running
File size: 1,331 Bytes
72f3c46 c81e42a 72f3c46 46a1568 72f3c46 46a1568 72f3c46 a9c1fb8 72f3c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import google.generativeai as genai
import base64
import io
from PIL import Image
import os
import json
# Configure Google Cloud credentials (replace with your actual API key or setup)
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Select the Gemini Pro Vision model
model = genai.GenerativeModel('gemini-1.5-flash')
# Prompt definition
prompt = """
You are analyzing a medical document or an application form from patient.
Extract the following fields as JSON:
- Position applied for
- Office/Ministry
- Duty station
- First name(s)
- Surname
- Date of birth
- Gender
- Citizenship
- Postal Address
- Residential Address
- Email
- Phone number (mobile)
"""
def process_image(image: Image.Image):
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
base64_image = buffered.getvalue()
response = model.generate_content([
prompt,
{
"mime_type": "image/jpeg",
"data": base64_image
}
])
return response.text
# Gradio interface
demo = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="textbox",
title="Healthelic Form Data Extractor (Doc Scanner) - Gemini 1.5-flash",
description="Upload a scanned medical form to extract key fields."
)
if __name__ == "__main__":
demo.launch() |