File size: 1,331 Bytes
72f3c46
 
 
 
 
 
 
 
 
 
 
 
c81e42a
72f3c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a1568
72f3c46
46a1568
 
 
 
 
 
 
72f3c46
 
 
 
 
 
 
a9c1fb8
72f3c46
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import google.generativeai as genai
import base64
import io
from PIL import Image
import os
import json

# Configure Google Cloud credentials (replace with your actual API key or setup)
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

# Select the Gemini Pro Vision model
model = genai.GenerativeModel('gemini-1.5-flash')

# Prompt definition
prompt = """
You are analyzing a medical document or an application form from patient.
Extract the following fields as JSON:
- Position applied for
- Office/Ministry
- Duty station
- First name(s)
- Surname
- Date of birth
- Gender
- Citizenship
- Postal Address
- Residential Address
- Email
- Phone number (mobile)
"""

def process_image(image: Image.Image):
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    base64_image = buffered.getvalue()

    response = model.generate_content([
        prompt,
        {
            "mime_type": "image/jpeg",
            "data": base64_image
        }
    ])
    return response.text

# Gradio interface
demo = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs="textbox",
    title="Healthelic Form Data Extractor (Doc Scanner) - Gemini 1.5-flash",
    description="Upload a scanned medical form to extract key fields."
)

if __name__ == "__main__":
    demo.launch()