Spaces:
Sleeping
Sleeping
Create dataset_uploader.py
Browse files- dataset_uploader.py +174 -0
dataset_uploader.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import tempfile
|
4 |
+
import uuid
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any, Dict, List, Optional, Union
|
7 |
+
|
8 |
+
import pyarrow as pa
|
9 |
+
import pyarrow.parquet as pq
|
10 |
+
from huggingface_hub import CommitScheduler
|
11 |
+
from huggingface_hub.hf_api import HfApi
|
12 |
+
|
13 |
+
###################################
|
14 |
+
# Parquet scheduler #
|
15 |
+
# Uploads data in parquet format #
|
16 |
+
###################################
|
17 |
+
|
18 |
+
|
19 |
+
class ParquetScheduler(CommitScheduler):
|
20 |
+
"""
|
21 |
+
Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
|
22 |
+
call will result in 1 row in your final dataset.
|
23 |
+
|
24 |
+
```py
|
25 |
+
# Start scheduler
|
26 |
+
>>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
|
27 |
+
|
28 |
+
# Append some data to be uploaded
|
29 |
+
>>> scheduler.append({...})
|
30 |
+
>>> scheduler.append({...})
|
31 |
+
>>> scheduler.append({...})
|
32 |
+
```
|
33 |
+
|
34 |
+
The scheduler will automatically infer the schema from the data it pushes.
|
35 |
+
Optionally, you can manually set the schema yourself:
|
36 |
+
|
37 |
+
```py
|
38 |
+
>>> scheduler = ParquetScheduler(
|
39 |
+
... repo_id="my-parquet-dataset",
|
40 |
+
... schema={
|
41 |
+
... "prompt": {"_type": "Value", "dtype": "string"},
|
42 |
+
... "negative_prompt": {"_type": "Value", "dtype": "string"},
|
43 |
+
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
|
44 |
+
... "image": {"_type": "Image"},
|
45 |
+
... },
|
46 |
+
... )
|
47 |
+
|
48 |
+
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
|
49 |
+
possible values.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
*,
|
55 |
+
repo_id: str,
|
56 |
+
schema: Optional[Dict[str, Dict[str, str]]] = None,
|
57 |
+
every: Union[int, float] = 5,
|
58 |
+
path_in_repo: Optional[str] = "data",
|
59 |
+
repo_type: Optional[str] = "dataset",
|
60 |
+
revision: Optional[str] = None,
|
61 |
+
private: bool = False,
|
62 |
+
token: Optional[str] = None,
|
63 |
+
allow_patterns: Union[List[str], str, None] = None,
|
64 |
+
ignore_patterns: Union[List[str], str, None] = None,
|
65 |
+
hf_api: Optional[HfApi] = None,
|
66 |
+
) -> None:
|
67 |
+
super().__init__(
|
68 |
+
repo_id=repo_id,
|
69 |
+
folder_path="dummy", # not used by the scheduler
|
70 |
+
every=every,
|
71 |
+
path_in_repo=path_in_repo,
|
72 |
+
repo_type=repo_type,
|
73 |
+
revision=revision,
|
74 |
+
private=private,
|
75 |
+
token=token,
|
76 |
+
allow_patterns=allow_patterns,
|
77 |
+
ignore_patterns=ignore_patterns,
|
78 |
+
hf_api=hf_api,
|
79 |
+
)
|
80 |
+
|
81 |
+
self._rows: List[Dict[str, Any]] = []
|
82 |
+
self._schema = schema
|
83 |
+
|
84 |
+
def append(self, row: Dict[str, Any]) -> None:
|
85 |
+
"""Add a new item to be uploaded."""
|
86 |
+
with self.lock:
|
87 |
+
self._rows.append(row)
|
88 |
+
|
89 |
+
def push_to_hub(self):
|
90 |
+
# Check for new rows to push
|
91 |
+
with self.lock:
|
92 |
+
rows = self._rows
|
93 |
+
self._rows = []
|
94 |
+
if not rows:
|
95 |
+
return
|
96 |
+
print(f"Got {len(rows)} item(s) to commit.")
|
97 |
+
|
98 |
+
# Load images + create 'features' config for datasets library
|
99 |
+
schema: Dict[str, Dict] = self._schema or {}
|
100 |
+
path_to_cleanup: List[Path] = []
|
101 |
+
for row in rows:
|
102 |
+
for key, value in row.items():
|
103 |
+
# Infer schema (for `datasets` library)
|
104 |
+
if key not in schema:
|
105 |
+
schema[key] = _infer_schema(key, value)
|
106 |
+
|
107 |
+
# Load binary files if necessary
|
108 |
+
if schema[key]["_type"] in ("Image", "Audio"):
|
109 |
+
# It's an image or audio: we load the bytes and remember to cleanup the file
|
110 |
+
file_path = Path(value)
|
111 |
+
if file_path.is_file():
|
112 |
+
row[key] = {
|
113 |
+
"path": file_path.name,
|
114 |
+
"bytes": file_path.read_bytes(),
|
115 |
+
}
|
116 |
+
path_to_cleanup.append(file_path)
|
117 |
+
|
118 |
+
# Complete rows if needed
|
119 |
+
for row in rows:
|
120 |
+
for feature in schema:
|
121 |
+
if feature not in row:
|
122 |
+
row[feature] = None
|
123 |
+
|
124 |
+
# Export items to Arrow format
|
125 |
+
table = pa.Table.from_pylist(rows)
|
126 |
+
|
127 |
+
# Add metadata (used by datasets library)
|
128 |
+
table = table.replace_schema_metadata(
|
129 |
+
{"huggingface": json.dumps({"info": {"features": schema}})}
|
130 |
+
)
|
131 |
+
|
132 |
+
# Write to parquet file
|
133 |
+
archive_file = tempfile.NamedTemporaryFile(delete=False)
|
134 |
+
pq.write_table(table, archive_file.name)
|
135 |
+
archive_file.close()
|
136 |
+
|
137 |
+
# Upload
|
138 |
+
self.api.upload_file(
|
139 |
+
repo_id=self.repo_id,
|
140 |
+
repo_type=self.repo_type,
|
141 |
+
revision=self.revision,
|
142 |
+
path_in_repo=f"{uuid.uuid4()}.parquet",
|
143 |
+
path_or_fileobj=archive_file.name,
|
144 |
+
)
|
145 |
+
print("Commit completed.")
|
146 |
+
|
147 |
+
# Cleanup
|
148 |
+
os.unlink(archive_file.name)
|
149 |
+
for path in path_to_cleanup:
|
150 |
+
path.unlink(missing_ok=True)
|
151 |
+
|
152 |
+
|
153 |
+
def _infer_schema(key: str, value: Any) -> Dict[str, str]:
|
154 |
+
"""
|
155 |
+
Infer schema for the `datasets` library.
|
156 |
+
|
157 |
+
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
|
158 |
+
"""
|
159 |
+
# In short any column_name in the dataset has any of these keywords
|
160 |
+
# the column will be inferred into the correct column type accordingly
|
161 |
+
if "image" in key:
|
162 |
+
return {"_type": "Image"}
|
163 |
+
if "audio" in key:
|
164 |
+
return {"_type": "Audio"}
|
165 |
+
if isinstance(value, int):
|
166 |
+
return {"_type": "Value", "dtype": "int64"}
|
167 |
+
if isinstance(value, float):
|
168 |
+
return {"_type": "Value", "dtype": "float64"}
|
169 |
+
if isinstance(value, bool):
|
170 |
+
return {"_type": "Value", "dtype": "bool"}
|
171 |
+
if isinstance(value, bytes):
|
172 |
+
return {"_type": "Value", "dtype": "binary"}
|
173 |
+
# Otherwise in last resort => convert it to a string
|
174 |
+
return {"_type": "Value", "dtype": "string"}
|