File size: 3,047 Bytes
17cf727
1a7e5d6
 
 
 
17cf727
 
 
 
 
 
027d8aa
02fcf54
 
 
 
027d8aa
 
02fcf54
 
17cf727
 
1a7e5d6
17cf727
 
 
 
 
 
 
 
 
 
 
 
 
 
027d8aa
17cf727
 
 
 
 
 
 
 
 
 
 
027d8aa
02fcf54
 
 
 
 
17cf727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7e5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17cf727
 
 
 
 
027d8aa
17cf727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from huggingface_hub import InferenceClient
from fastapi import FastAPI
from pydantic import BaseModel


import gradio as gr

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.3"
)

def format_prompt(message, history, system_message=None):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    if system_message:
        prompt += f"[SYS] {system_message} [/SYS]"
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(
    prompt, history, system_message=None, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history, system_message)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.TextArea(
        label="System message",
        value="",
        interactive=True,
        info="context",
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

class Item(BaseModel):
    prompt: str
    history: list
    system_prompt: str
    temperature: float = 0.0
    max_new_tokens: int = 1048
    top_p: float = 0.15
    repetition_penalty: float = 1.0
app = FastAPI()

@app.post("/generate/")
async def generate_text(item: Item):
    return {"response": generate(item.prompt, item.history, item.system_message, item.temperature, item.max_new_tokens, item.top_p, item.repetition_penalty)}



gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="""mistralai/Mistral-7B-Instruct-v0.3"""
).launch(show_api=False)