Philippe Kaplan commited on
Commit
f156ceb
·
1 Parent(s): e1705ef

switch to fast API and mistral

Browse files
Files changed (1) hide show
  1. app.py +52 -72
app.py CHANGED
@@ -1,74 +1,54 @@
1
- #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
2
- #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
3
- import gradio as gr
4
- from openai import OpenAI
5
- import os
6
-
7
- css = '''
8
- .gradio-container{max-width: 890px !important}
9
- h1{text-align:center}
10
- footer {
11
- visibility: hidden
12
- }
13
- '''
14
-
15
- ACCESS_TOKEN = os.getenv("HF_TOKEN")
16
-
17
- client = OpenAI(
18
- base_url="https://api-inference.huggingface.co/v1/",
19
- api_key=ACCESS_TOKEN,
20
- )
21
-
22
- def respond(
23
- message,
24
- history: list[tuple[str, str]],
25
- system_message,
26
- max_tokens,
27
- temperature,
28
- top_p,
29
- ):
30
- messages = [{"role": "system", "content": system_message}]
31
-
32
- for val in history:
33
- if val[0]:
34
- messages.append({"role": "user", "content": val[0]})
35
- if val[1]:
36
- messages.append({"role": "assistant", "content": val[1]})
37
-
38
- messages.append({"role": "user", "content": message})
39
-
40
- response = ""
41
-
42
- for message in client.chat.completions.create(
43
- model="meta-llama/Meta-Llama-3.1-70B-Instruct",
44
- max_tokens=max_tokens,
45
- stream=True,
46
  temperature=temperature,
 
47
  top_p=top_p,
48
- messages=messages,
49
- ):
50
- token = message.choices[0].delta.content
51
-
52
- response += token
53
- yield response
54
-
55
- demo = gr.ChatInterface(
56
- respond,
57
- additional_inputs=[
58
- gr.Textbox(value="", label="System message"),
59
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
60
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
61
- gr.Slider(
62
- minimum=0.1,
63
- maximum=1.0,
64
- value=0.95,
65
- step=0.05,
66
- label="Top-P",
67
- ),
68
-
69
- ],
70
- css=css,
71
- theme="allenai/gradio-theme",
72
- )
73
- if __name__ == "__main__":
74
- demo.launch()
 
1
+ # from https://huggingface.co/spaces/iiced/mixtral-46.7b-fastapi/blob/main/main.py
2
+ from fastapi import FastAPI
3
+ from pydantic import BaseModel
4
+ from huggingface_hub import InferenceClient
5
+ import uvicorn
6
+
7
+
8
+ app = FastAPI()
9
+
10
+ client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
11
+
12
+ class Item(BaseModel):
13
+ prompt: str
14
+ history: list
15
+ system_prompt: str
16
+ temperature: float = 0.0
17
+ max_new_tokens: int = 1048
18
+ top_p: float = 0.15
19
+ repetition_penalty: float = 1.0
20
+
21
+ def format_prompt(message, history):
22
+ prompt = "<s>"
23
+ for user_prompt, bot_response in history:
24
+ prompt += f"[INST] {user_prompt} [/INST]"
25
+ prompt += f" {bot_response}</s> "
26
+ prompt += f"[INST] {message} [/INST]"
27
+ return prompt
28
+
29
+ def generate(item: Item):
30
+ temperature = float(item.temperature)
31
+ if temperature < 1e-2:
32
+ temperature = 1e-2
33
+ top_p = float(item.top_p)
34
+
35
+ generate_kwargs = dict(
 
 
 
 
 
 
 
 
 
 
36
  temperature=temperature,
37
+ max_new_tokens=item.max_new_tokens,
38
  top_p=top_p,
39
+ repetition_penalty=item.repetition_penalty,
40
+ do_sample=True,
41
+ seed=42,
42
+ )
43
+
44
+ formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
45
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
46
+ output = ""
47
+
48
+ for response in stream:
49
+ output += response.token.text
50
+ return output
51
+
52
+ @app.post("/generate/")
53
+ async def generate_text(item: Item):
54
+ return {"response": generate(item)}