Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- optimization.py +66 -0
- text.py +130 -0
optimization.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import Counter
|
| 2 |
+
from itertools import chain
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def ngrams(sequence, n):
|
| 9 |
+
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
|
| 10 |
+
|
| 11 |
+
def count_ngrams(sequence, max_n):
|
| 12 |
+
counts = Counter()
|
| 13 |
+
for n in range(1, max_n + 1):
|
| 14 |
+
counts.update(ngrams(sequence, n))
|
| 15 |
+
return counts
|
| 16 |
+
|
| 17 |
+
def self_bleu(outputs):
|
| 18 |
+
smoothing_function = SmoothingFunction().method1
|
| 19 |
+
scores = []
|
| 20 |
+
for i in range(len(outputs)):
|
| 21 |
+
references = outputs[:i] + outputs[i+1:]
|
| 22 |
+
# Avoid calculating BLEU score for empty references
|
| 23 |
+
if references:
|
| 24 |
+
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
|
| 25 |
+
# If all references are empty, return a default value
|
| 26 |
+
if not scores:
|
| 27 |
+
return 0
|
| 28 |
+
return sum(scores) / len(scores)
|
| 29 |
+
|
| 30 |
+
def dist_n(outputs, n):
|
| 31 |
+
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
|
| 32 |
+
unique_ngrams = set(all_ngrams)
|
| 33 |
+
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
|
| 34 |
+
|
| 35 |
+
def perplexity(model, tokenizer, texts):
|
| 36 |
+
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
| 37 |
+
max_length = model.config.n_positions
|
| 38 |
+
stride = 512
|
| 39 |
+
lls = []
|
| 40 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
| 41 |
+
begin_loc = max(i + stride - max_length, 0)
|
| 42 |
+
end_loc = i + stride
|
| 43 |
+
trg_len = end_loc - i
|
| 44 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
|
| 45 |
+
target_ids = input_ids.clone()
|
| 46 |
+
target_ids[:, :-trg_len] = -100
|
| 47 |
+
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
outputs = model(input_ids, labels=target_ids)
|
| 50 |
+
log_likelihood = outputs.loss * trg_len
|
| 51 |
+
lls.append(log_likelihood)
|
| 52 |
+
|
| 53 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
| 54 |
+
return ppl.item()
|
| 55 |
+
|
| 56 |
+
def js_divergence(p, q):
|
| 57 |
+
def kl_divergence(p, q):
|
| 58 |
+
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
|
| 59 |
+
|
| 60 |
+
p_norm = [float(i)/sum(p) for i in p]
|
| 61 |
+
q_norm = [float(i)/sum(q) for i in q]
|
| 62 |
+
|
| 63 |
+
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
|
| 64 |
+
|
| 65 |
+
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
|
| 66 |
+
|
text.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from markdownify import markdownify as md
|
| 2 |
+
from bs4 import BeautifulSoup as BS
|
| 3 |
+
from IPython.display import display, Markdown
|
| 4 |
+
from urllib.parse import urljoin
|
| 5 |
+
from newspaper import Article
|
| 6 |
+
import re
|
| 7 |
+
import markdown
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def clean(s):
|
| 11 |
+
s = s.replace("\t", "\\t")
|
| 12 |
+
s = s.replace("\n", "\\n")
|
| 13 |
+
return s
|
| 14 |
+
|
| 15 |
+
class DocTree:
|
| 16 |
+
def __init__(self, content):
|
| 17 |
+
self.content = content
|
| 18 |
+
self.max_depth = 6
|
| 19 |
+
|
| 20 |
+
def get_sections(self, *location_ids):
|
| 21 |
+
out = self.content
|
| 22 |
+
for id_ in location_ids:
|
| 23 |
+
out = out[id_]
|
| 24 |
+
return out
|
| 25 |
+
|
| 26 |
+
def merge_sections(self, elems):
|
| 27 |
+
if not isinstance(elems[0], list):
|
| 28 |
+
return '\n\n '.join(elems)
|
| 29 |
+
out = []
|
| 30 |
+
for e in elems:
|
| 31 |
+
out.append(self.merge_sections(e))
|
| 32 |
+
return '\n\n '.join(map(clean, out))
|
| 33 |
+
|
| 34 |
+
def get_merged_sections(self, *location_ids):
|
| 35 |
+
return [self.merge_sections(s) for s in self.get_sections(*location_ids)]
|
| 36 |
+
|
| 37 |
+
def as_markdown(self, content):
|
| 38 |
+
return md(content)
|
| 39 |
+
|
| 40 |
+
def get_sections_by_depth(self, depth):
|
| 41 |
+
return self._get_sections_by_depth(self.content, depth)
|
| 42 |
+
|
| 43 |
+
@staticmethod
|
| 44 |
+
def _get_sections_by_depth(content, depth):
|
| 45 |
+
"""Returns a list of merged sections at a specific depth"""
|
| 46 |
+
if depth == 0:
|
| 47 |
+
return content
|
| 48 |
+
out = []
|
| 49 |
+
for elem in content:
|
| 50 |
+
out += DocTree._get_sections_by_depth(elem, depth - 1)
|
| 51 |
+
return out
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def fix_relative_links(url, article_content):
|
| 55 |
+
if 'http' in url:
|
| 56 |
+
base_url = '/'.join(url.split('/')[:3])
|
| 57 |
+
else:
|
| 58 |
+
base_url = url.split('/')
|
| 59 |
+
pat = re.compile(r'\[(.*?)\]\((.*?)\)', flags=re.IGNORECASE)
|
| 60 |
+
res = pat.findall(article_content)
|
| 61 |
+
if res:
|
| 62 |
+
for g in res:
|
| 63 |
+
url = urljoin(base_url, g[1]) if g[1].startswith('/') else g[1]
|
| 64 |
+
article_content = article_content.replace(f'[{g[0]}]({g[1]})', f'[{g[0]}]({url})')
|
| 65 |
+
else:print('not found')
|
| 66 |
+
return article_content
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def extract_article(url):
|
| 70 |
+
article = Article(url)
|
| 71 |
+
article.download()
|
| 72 |
+
article.parse()
|
| 73 |
+
return article
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def select_content(html_code, elem_class, class_name):
|
| 77 |
+
print(f'Calling select_content with {elem_class}, {class_name}')
|
| 78 |
+
if class_name.startswith('.'):
|
| 79 |
+
class_name = class_name[1:]
|
| 80 |
+
elem_id = None
|
| 81 |
+
elif class_name.startswith('#'):
|
| 82 |
+
elem_id = class_name[1:]
|
| 83 |
+
class_name = None
|
| 84 |
+
else:
|
| 85 |
+
elem_id = None
|
| 86 |
+
class_name = None
|
| 87 |
+
return md(str(BS(html_code, features="lxml").find(elem_class, class_=class_name, id=elem_id)))
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def split_by_heading(html_content, _i):
|
| 91 |
+
if _i >= 7:
|
| 92 |
+
return html_content
|
| 93 |
+
elems = []
|
| 94 |
+
for idx, elem in enumerate([i for i in html_content.split(f'<h{_i}') if i]):
|
| 95 |
+
if idx > 0 or elem.startswith('>'):
|
| 96 |
+
elem = f'<h{_i}{elem}'
|
| 97 |
+
elems.append(split_by_heading(elem, _i+1))
|
| 98 |
+
return elems
|
| 99 |
+
|
| 100 |
+
def doctree_from_url(url, elem_class='div', class_name='article-body'):
|
| 101 |
+
article = extract_article(url)
|
| 102 |
+
# convert to MD to handle splitting better
|
| 103 |
+
article_content = select_content(article.html, elem_class, class_name)
|
| 104 |
+
article_content = (f"# {article.title}\n\n" + article_content).replace('\n\n', '\n').replace('#', '%%@@%%')
|
| 105 |
+
# fix relative website links
|
| 106 |
+
article_content = fix_relative_links(url, article_content)
|
| 107 |
+
# convert back to HTML
|
| 108 |
+
html_content = markdown.markdown(article_content).replace('%%@@%%', '#')
|
| 109 |
+
doc_tree = DocTree(split_by_heading(html_content, 1))
|
| 110 |
+
|
| 111 |
+
#assert doc_tree.merge_sections(doc_tree.get_sections(0)).replace('\n', '').replace(html_content.replace('\n', ''), '') == '', 'Document inconsistent. Manual adjustments required.'
|
| 112 |
+
return doc_tree
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_selectors_for_class(url, elem_class):
|
| 116 |
+
article = extract_article(url)
|
| 117 |
+
|
| 118 |
+
html_content = article.html
|
| 119 |
+
soup = BS(html_content, features="lxml")
|
| 120 |
+
classes = set()
|
| 121 |
+
ids = set()
|
| 122 |
+
for elem in soup.find_all(elem_class):
|
| 123 |
+
if elem.get('class'):
|
| 124 |
+
for c in elem.get('class'):
|
| 125 |
+
classes |= {f".{c}"}
|
| 126 |
+
if elem.get('id'):
|
| 127 |
+
for c in elem.get('id'):
|
| 128 |
+
ids |= {f"#{c}"}
|
| 129 |
+
|
| 130 |
+
return ids | classes
|