Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import itertools | |
| import pandas as pd | |
| import spaces | |
| import random | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel | |
| from sklearn.metrics import pairwise_distances | |
| from collections import Counter | |
| from itertools import chain | |
| from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction | |
| import math | |
| import markdown | |
| from src.text import doctree_from_url, get_selectors_for_class, split_by_heading, DocTree | |
| from src.optimization import ngrams, count_ngrams, self_bleu, dist_n, perplexity, js_divergence | |
| model_name = 'philipp-zettl/t5-small-long-qa' | |
| qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| model_name = 'philipp-zettl/t5-small-qg' | |
| qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small') | |
| embedding_model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') | |
| embedding_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') | |
| # Move only the student model to GPU if available | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| qa_model = qa_model.to(device) | |
| qg_model = qg_model.to(device) | |
| embedding_model = embedding_model.to(device) | |
| max_questions = 1 | |
| max_answers = 1 | |
| max_elem_value = 100 | |
| def embedding_similarity(inputs, outputs): | |
| global embedding_model, embedding_tokenizer, device | |
| def embed(texts): | |
| inputs = embedding_tokenizer(texts, return_tensors='pt', padding=True, truncation=True).to(device) | |
| with torch.no_grad(): | |
| outputs = embedding_model(**inputs) | |
| return outputs.last_hidden_state.mean(dim=1).cpu().numpy() | |
| input_embeddings = embed(inputs) | |
| output_embeddings = embed(outputs) | |
| similarities = pairwise_distances(input_embeddings, output_embeddings, metric='cosine') | |
| return sum(similarities) / len(similarities) | |
| def evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=85): | |
| generated_outputs = [] | |
| for input_text in eval_data: | |
| input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| outputs = model.generate( | |
| input_ids, | |
| num_beams=num_beams, | |
| num_beam_groups=num_beam_groups, | |
| diversity_penalty=1.0, | |
| max_new_tokens=max_length, | |
| ) | |
| decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| generated_outputs.append(decoded_text.split()) | |
| # Self-BLEU for diversity | |
| diversity_score = self_bleu(generated_outputs) | |
| # Dist-1 and Dist-2 for diversity | |
| dist1 = dist_n(generated_outputs, 1) | |
| dist2 = dist_n(generated_outputs, 2) | |
| # Perplexity for fluency and relevance | |
| fluency_score = perplexity(model, tokenizer, [" ".join(output) for output in generated_outputs]) | |
| # Embedding similarity for contextual relevance | |
| contextual_score = embedding_similarity(eval_data, [" ".join(output) for output in generated_outputs]) | |
| # Jensen-Shannon Divergence for distribution similarity | |
| generated_ngrams = count_ngrams(list(chain(*generated_outputs)), 4) | |
| reference_ngrams = count_ngrams(list(chain(*[tokenizer.tokenize(text) for text in eval_data])), 4) | |
| all_ngrams = set(generated_ngrams.keys()).union(set(reference_ngrams.keys())) | |
| p = [generated_ngrams[ngram] for ngram in all_ngrams] | |
| q = [reference_ngrams[ngram] for ngram in all_ngrams] | |
| jsd_score = js_divergence(p, q) | |
| return { | |
| "diversity_score": diversity_score, | |
| "dist1": dist1, | |
| "dist2": dist2, | |
| "fluency_score": fluency_score, | |
| "contextual_score": contextual_score, | |
| "jsd_score": jsd_score | |
| } | |
| def find_best_parameters(eval_data, model, tokenizer, max_length=85): | |
| # Parameter ranges | |
| parameter_map = { | |
| 2: [2], | |
| 4: [2], | |
| 6: [2], # 6x3 == 4x2 | |
| 8: [2], # 8x4 == 6x3 == 4x2 | |
| 9: [3], | |
| 10: [2], # 10x5 == 8x4 == 6x3 == 4x2 | |
| } | |
| # Find the best parameters | |
| best_score = -float('inf') | |
| best_params = None | |
| for num_beams in parameter_map.keys(): | |
| for num_beam_groups in parameter_map[num_beams]: | |
| if num_beam_groups > num_beams: | |
| continue # num_beam_groups should not be greater than num_beams | |
| scores = evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=max_length) | |
| # Combine scores to determine the best parameters | |
| combined_score = (scores['dist1'] + scores['dist2'] - scores['fluency_score'] + scores['contextual_score'] - scores['jsd_score']).mean() | |
| print(f"num_beams={num_beams}, num_beam_groups={num_beam_groups}, avg combined score={combined_score}") | |
| if combined_score > best_score: | |
| best_score = combined_score | |
| best_params = (num_beams, num_beam_groups) | |
| print(f"Best parameters: num_beams={best_params[0]}, num_beam_groups={best_params[1]} with combined score={best_score}") | |
| return best_params | |
| def run_model(inputs, tokenizer, model, num_beams=2, num_beam_groups=2, temperature=0.5, num_return_sequences=1, max_length=85, seed=42069): | |
| all_outputs = [] | |
| torch.manual_seed(seed) | |
| for input_text in inputs: | |
| model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True) | |
| input_ids = torch.tensor(model_inputs['input_ids']).to(device) | |
| for sample in input_ids: | |
| sample_outputs = [] | |
| with torch.no_grad(): | |
| sample_output = model.generate( | |
| input_ids[:1], | |
| max_length=max_length, | |
| num_return_sequences=num_return_sequences, | |
| low_memory=True, | |
| use_cache=True, | |
| # Diverse Beam search decoding | |
| num_beams=max(2, num_return_sequences), | |
| num_beam_groups=max(2, num_return_sequences), | |
| diversity_penalty=temperature, | |
| ) | |
| for i, sample_output in enumerate(sample_output): | |
| sample_output = sample_output.unsqueeze(0) | |
| sample_output = tokenizer.decode(sample_output[0], skip_special_tokens=True) | |
| sample_outputs.append(sample_output) | |
| all_outputs.append(sample_outputs) | |
| return all_outputs | |
| def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1, max_length=85, seed=42069, optimize_questions=False): | |
| inputs = [ | |
| f'context: {content}' | |
| ] | |
| question = run_model( | |
| inputs, | |
| tokenizer, | |
| qg_model, | |
| num_beams=num_return_sequences_qg, | |
| num_beam_groups=num_return_sequences_qg, | |
| temperature=temperature_qg, | |
| num_return_sequences=num_return_sequences_qg, | |
| max_length=max_length, | |
| seed=seed | |
| ) | |
| if optimize_questions: | |
| q_params = find_best_parameters( | |
| list(chain.from_iterable(question)), qg_model, tokenizer, max_length=max_length | |
| ) | |
| question = run_model( | |
| inputs, | |
| tokenizer, | |
| qg_model, | |
| num_beams=q_params[0], | |
| num_beam_groups=q_params[1], | |
| temperature=temperature_qg, | |
| num_return_sequences=num_return_sequences_qg, | |
| max_length=max_length, | |
| seed=seed | |
| ) | |
| inputs = list(chain.from_iterable([ | |
| [f'question: {q} context: {content}' for q in q_set] for q_set in question | |
| ])) | |
| answer = run_model( | |
| inputs, | |
| tokenizer, | |
| qa_model, | |
| num_beams=num_return_sequences_qa, | |
| num_beam_groups=num_return_sequences_qa, | |
| temperature=temperature_qa, | |
| num_return_sequences=num_return_sequences_qa, | |
| max_length=max_length, | |
| seed=seed | |
| ) | |
| questions = list(chain.from_iterable(question)) | |
| answers = list(chain.from_iterable(answer)) | |
| results = [] | |
| for idx, ans in enumerate(answers): | |
| results.append({'question': questions[idx % num_return_sequences_qg], 'answer': ans}) | |
| return results | |
| def variable_outputs(k, max_elems=10): | |
| global max_elem_value | |
| k = int(k) | |
| return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, max_elem_value)- k) | |
| def set_outputs(content, max_elems=10): | |
| c = eval(content) | |
| print('received content: ', c) | |
| return [gr.Text(value=t, visible=True) for t in c] + [gr.Text(visible=False)] * (max(max_elems, 10) - len(c)) | |
| def create_file_download(qnas): | |
| with open('qnas.tsv', 'w') as f: | |
| for idx, qna in qnas.iterrows(): | |
| f.write(qna['Question'] + '\t' + qna['Answer']) | |
| if idx < len(qnas) - 1: | |
| f.write('\n') | |
| return 'qnas.tsv' | |
| def main(): | |
| with gr.Tab(label='QA Generator'): | |
| with gr.Tab(label='Explanation'): | |
| gr.Markdown( | |
| ''' | |
| # QA Generator | |
| This tab allows you to generate questions and answers from a given piece of text content. | |
| ## How to use | |
| 1. Enter the text content you want to generate questions and answers from. | |
| 2. Adjust the diversity penalty for question generation and answer generation. | |
| 3. Set the maximum length of the generated questions and answers. | |
| 4. Choose the number of questions and answers you want to generate. | |
| 5. Click on the "Generate" button. | |
| The next section will give you insights into the generated questions and answers. | |
| If you're satisfied with the generated questions and answers, you can download them as a TSV file. | |
| ''' | |
| ) | |
| with gr.Accordion(label='Optimization', open=False): | |
| gr.Markdown(""" | |
| For optimization of the question generation we apply the following combined score: | |
| $$\\text{combined} = \\text{dist1} + \\text{dist2} - \\text{fluency} + \\text{contextual} - \\text{jsd}$$ | |
| Here's a brief explanation of each component: | |
| 1. **dist1 and dist2**: These represent the diversity of the generated outputs. dist1 measures the ratio of unique unigrams to total unigrams, and dist2 measures the ratio of unique bigrams to total bigrams. <u>**Higher values indicate more diverse outputs.**</u> | |
| 2. **fluency**: This is the perplexity of the generated outputs, which measures how well the outputs match the language model's expectations. <u>**Lower values indicate better fluency.**</u> | |
| 3. **contextual**: This measures the similarity between the input and generated outputs using embedding similarity. <u>**Higher values indicate better contextual relevance.**</u> | |
| 4. **jsd**: This is the Jensen-Shannon Divergence between the n-gram distributions of the generated outputs and the reference data. <u>**Lower values indicate greater similarity between distributions.**</u> | |
| """, latex_delimiters=[{'display': False, 'left': '$$', 'right': '$$'}]) | |
| with gr.Tab(label='Generate QA'): | |
| with gr.Row(equal_height=True): | |
| with gr.Group("Content"): | |
| content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000) | |
| with gr.Group("Settings"): | |
| temperature_qg = gr.Slider(label='Diversity Penalty QG', value=0.2, minimum=0, maximum=1, step=0.01) | |
| temperature_qa = gr.Slider(label='Diversity Penalty QA', value=0.5, minimum=0, maximum=1, step=0.01) | |
| max_length = gr.Number(label='Max Length', value=85, minimum=1, step=1, maximum=512) | |
| num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, max_elem_value)) | |
| num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, max_elem_value)) | |
| seed = gr.Number(label="seed", value=42069) | |
| optimize_questions = gr.Checkbox(label="Optimize questions?", value=False) | |
| with gr.Row(): | |
| gen_btn = gr.Button("Generate") | |
| def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, max_length, seed, optimize_questions): | |
| if not content.strip(): | |
| raise gr.Error('Please enter some content to generate questions and answers.') | |
| qnas = gen( | |
| content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, | |
| max_length, seed, optimize_questions | |
| ) | |
| df = gr.Dataframe( | |
| value=[u.values() for u in qnas], | |
| headers=['Question', 'Answer'], | |
| col_count=2, | |
| wrap=True | |
| ) | |
| pd_df = pd.DataFrame([u.values() for u in qnas], columns=['Question', 'Answer']) | |
| download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df)) | |
| content.change(lambda x: x.strip(), content) | |
| def new_main(): | |
| with gr.Tab('Content extraction from URL'): | |
| with gr.Tab(label='Explanation'): | |
| gr.Markdown( | |
| ''' | |
| # Content extraction from URL | |
| This tab allows you to extract content from a URL and chunk it into sections. | |
| ## How to use | |
| 1. Enter the URL of the webpage you want to extract content from. | |
| 2. Select the element class and class name of the HTML element you want to extract content from. | |
| 3. Click on the "Extract content" button. | |
| The next section will give you insights into the extracted content. | |
| This was done to give you the possibility to look at the extracted content, as well as manipulate it further. | |
| Once you extract the content, you can choose the depth level to chunk the content into sections. | |
| 1. Enter the depth level you want to chunk the content into. **Note: <u>This is based on the HTML structure of the webpage, we're utilizing heading tags for this purpose</u>** | |
| 2. Click on the "Chunk content" button. | |
| ''' | |
| ) | |
| with gr.Tab(label='Extract content'): | |
| url = gr.Textbox(label='URL', placeholder='Enter URL here', lines=1, max_lines=1) | |
| elem_class = gr.Dropdown(label='CSS element class', choices=['div', 'p', 'span', 'main', 'body', 'section', 'main'], value='div') | |
| class_name = gr.Dropdown(label='CSS class name', choices=[], allow_custom_value=True) | |
| extract_btn = gr.Button('Extract content') | |
| with gr.Group(): | |
| content_state = gr.State(None) | |
| final_content = gr.Textbox(value='', show_copy_button=True, label='Final content', interactive=True) | |
| with gr.Accordion('Reveal original input', open=False): | |
| og_content = gr.Textbox(value='', label='OG HTML content') | |
| with gr.Group(visible=False) as step_2_group: | |
| depth_level = gr.Number(label='Depth level', value=1, minimum=0, step=1, maximum=6) | |
| continue_btn = gr.Button('Chunk content') | |
| def render_results(url, elem_class_, class_name_): | |
| if not url.strip(): | |
| raise gr.Error('Please enter a URL to extract content.') | |
| content = doctree_from_url(url, elem_class_, class_name_) | |
| return [ | |
| content, | |
| content.content, | |
| content.as_markdown(content.merge_sections(content.get_sections(0))), | |
| gr.Group(visible=True) | |
| ] | |
| def get_class_options(url, elem_class): | |
| if not url.strip(): | |
| raise gr.Error('Please enter a URL to extract content.') | |
| return gr.Dropdown(label='CSS class name', choices=list(set(get_selectors_for_class(url, elem_class)))) | |
| def update_content_state_on_final_change(final_content): | |
| html_content = markdown.markdown(final_content) | |
| return DocTree(split_by_heading(html_content, 1)) | |
| def select_content(content, depth_level): | |
| if not content: | |
| raise gr.Error('Please extract content first.') | |
| sections = content.get_sections_by_depth(depth_level) | |
| print(f'Found {len(sections)} sections') | |
| ds = [] | |
| for idx, section in enumerate(sections): | |
| ds.append([idx, content.as_markdown(content.merge_sections(section))]) | |
| gr.Dataframe(value=ds, headers=['Section #', 'Content'], interactive=True, wrap=True) | |
| url.change( | |
| get_class_options, | |
| inputs=[url, elem_class], | |
| outputs=[class_name] | |
| ) | |
| extract_btn.click( | |
| render_results, | |
| inputs=[ | |
| url, elem_class, class_name, | |
| ], | |
| outputs=[ | |
| content_state, og_content, final_content, step_2_group | |
| ] | |
| ) | |
| final_content.change(update_content_state_on_final_change, inputs=[final_content], outputs=[content_state]) | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| ''' | |
| # QA-Generator | |
| A tool to build FAQs or QnAs from a given piece of text content. | |
| ## How to use | |
| We provide you two major functionalities: | |
| 1. **Content extraction from URL**: Extract content from a URL and chunk it into sections. | |
| 2. **QA Generator**: Generate questions and answers from a given text content. | |
| Select the tab you want to use and follow the instructions. | |
| ''' | |
| ) | |
| new_main() | |
| main() | |
| demo.queue() | |
| demo.launch() | |