ChessPT / app.py
philipp-zettl's picture
Update app.py
466f659 verified
raw
history blame
1.51 kB
import gradio as gr
from model import DecoderTransformer, Tokenizer
from huggingface_hub import hf_hub_download
import torch
vocab_size=33
n_embed=384
context_size=256
n_layer=6
n_head=6
dropout=0.2
device = 'cpu'
model_id = "philipp-zettl/chessPT"
model_path = hf_hub_download(repo_id=model_id, filename="chessPT.pkl")
tokenizer_path = hf_hub_download(repo_id=model_id, filename="tokenizer.json")
model = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.to(device)
tokenizer = Tokenizer.from_pretrained(tokenizer_path)
def generate(prompt):
model_input = torch.tensor(tokenizer.encode(prompt), dtype=torch.long, device=device).view((1, len(prompt)))
return tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size)[0].tolist())
with gr.Blocks() as demo:
gr.Markdown("""
# ChessPT
Welcome to ChessPT.
The **C**hess-**P**re-trained-**T**ransformer.
The rules are simple: provide a PGN string of your current game, the engine will predict the next token!
""")
prompt = gr.Text(label="PGN")
output = gr.Text(label="Next turn", interactive=False)
submit = gr.Button("Submit")
submit.click(generate, [prompt], [output])
gr.Examples(
[
["1. e4", ],
["1. e4 g6 2."],
],
inputs=[prompt],
outputs=[output],
fn=generate
)
demo.launch()