Spaces:
Running
Running
import gradio as gr | |
from io import StringIO | |
from model import DecoderTransformer, Tokenizer | |
from huggingface_hub import hf_hub_download | |
import torch | |
import chess | |
import chess.svg | |
import chess.pgn | |
vocab_size=33 | |
n_embed=384 | |
context_size=256 | |
n_layer=6 | |
n_head=6 | |
dropout=0.2 | |
device = 'cpu' | |
model_id = "philipp-zettl/chessPT" | |
model_path = hf_hub_download(repo_id=model_id, filename="chessPT.pkl") | |
tokenizer_path = hf_hub_download(repo_id=model_id, filename="tokenizer.json") | |
model = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.to(device) | |
tokenizer = Tokenizer.from_pretrained(tokenizer_path) | |
def generate(prompt): | |
model_input = torch.tensor(tokenizer.encode(prompt), dtype=torch.long, device=device).view((1, len(prompt))) | |
pgn = tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size)[0].tolist()) | |
pgn_str = StringIO(pgn) | |
game = chess.pgn.read_game(pgn_str) | |
img = chess.svg.board(game.board()) | |
filename = f'moves-{pgn}' | |
with open(filename, 'w') as f: | |
f.write(img) | |
return pgn, filename | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# ChessPT | |
Welcome to ChessPT. | |
The **C**hess-**P**re-trained-**T**ransformer. | |
The rules are simple: provide a PGN string of your current game, the engine will predict the next token! | |
""") | |
prompt = gr.Text(label="PGN") | |
output = gr.Text(label="Next turn", interactive=False) | |
submit = gr.Button("Submit") | |
submit.click(generate, [prompt], [output]) | |
img = gr.Image() | |
gr.Examples( | |
[ | |
["1. e4", ], | |
["1. e4 g6 2."], | |
], | |
inputs=[prompt], | |
outputs=[output, img], | |
fn=generate | |
) | |
demo.launch() | |