Spaces:
Sleeping
Sleeping
new version
Browse files- app.py +879 -126
- requirements.txt +15 -6
app.py
CHANGED
@@ -1,126 +1,879 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
import
|
14 |
-
import
|
15 |
-
import
|
16 |
-
import
|
17 |
-
|
18 |
-
from
|
19 |
-
from
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
"
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import openvino_genai
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from threading import Lock
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
import requests
|
10 |
+
from PIL import Image
|
11 |
+
from io import BytesIO
|
12 |
+
import cpuinfo
|
13 |
+
import openvino as ov
|
14 |
+
import librosa
|
15 |
+
from googleapiclient.discovery import build
|
16 |
+
import gc
|
17 |
+
import tempfile
|
18 |
+
from PyPDF2 import PdfReader
|
19 |
+
from docx import Document
|
20 |
+
import textwrap
|
21 |
+
|
22 |
+
# Google API configuration
|
23 |
+
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
|
24 |
+
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
|
25 |
+
DEFAULT_MAX_TOKENS = 100
|
26 |
+
DEFAULT_NUM_IMAGES = 1
|
27 |
+
MAX_HISTORY_TURNS = 3
|
28 |
+
MAX_TOKENS_LIMIT = 1000
|
29 |
+
|
30 |
+
class UnifiedAISystem:
|
31 |
+
def __init__(self):
|
32 |
+
self.pipe_lock = Lock()
|
33 |
+
self.current_df = None
|
34 |
+
self.mistral_pipe = None
|
35 |
+
self.internvl_pipe = None
|
36 |
+
self.whisper_pipe = None
|
37 |
+
self.current_document_text = None # Store document content
|
38 |
+
self.initialize_models()
|
39 |
+
|
40 |
+
def initialize_models(self):
|
41 |
+
"""Initialize all required models"""
|
42 |
+
# Download models if not exists
|
43 |
+
if not os.path.exists("mistral-ov"):
|
44 |
+
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
|
45 |
+
if not os.path.exists("internvl-ov"):
|
46 |
+
snapshot_download(repo_id="OpenVINO/InternVL2-1B-int8-ov", local_dir="internvl-ov")
|
47 |
+
if not os.path.exists("whisper-ov-model"):
|
48 |
+
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
|
49 |
+
|
50 |
+
# CPU-specific configuration
|
51 |
+
cpu_features = cpuinfo.get_cpu_info()['flags']
|
52 |
+
config_options = {}
|
53 |
+
if 'avx512' in cpu_features:
|
54 |
+
config_options["ENFORCE_BF16"] = "YES"
|
55 |
+
elif 'avx2' in cpu_features:
|
56 |
+
config_options["INFERENCE_PRECISION_HINT"] = "f32"
|
57 |
+
|
58 |
+
# Initialize Mistral model
|
59 |
+
self.mistral_pipe = openvino_genai.LLMPipeline(
|
60 |
+
"mistral-ov",
|
61 |
+
device="CPU",
|
62 |
+
config={"PERFORMANCE_HINT": "THROUGHPUT", **config_options}
|
63 |
+
)
|
64 |
+
|
65 |
+
# Initialize Whisper for audio processing
|
66 |
+
self.whisper_pipe = openvino_genai.WhisperPipeline("whisper-ov-model", device="CPU")
|
67 |
+
|
68 |
+
def load_data(self, file_path):
|
69 |
+
"""Load student data from file"""
|
70 |
+
try:
|
71 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
72 |
+
if file_ext == '.csv':
|
73 |
+
self.current_df = pd.read_csv(file_path)
|
74 |
+
elif file_ext in ['.xlsx', '.xls']:
|
75 |
+
self.current_df = pd.read_excel(file_path)
|
76 |
+
else:
|
77 |
+
return False, "❌ Unsupported file format. Please upload a .csv or .xlsx file."
|
78 |
+
return True, f"✅ Loaded {len(self.current_df)} records from {os.path.basename(file_path)}"
|
79 |
+
except Exception as e:
|
80 |
+
return False, f"❌ Error loading file: {str(e)}"
|
81 |
+
|
82 |
+
def extract_text_from_document(self, file_path):
|
83 |
+
"""Extract text from PDF or DOCX documents"""
|
84 |
+
text = ""
|
85 |
+
try:
|
86 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
87 |
+
|
88 |
+
if file_ext == '.pdf':
|
89 |
+
with open(file_path, 'rb') as file:
|
90 |
+
pdf_reader = PdfReader(file)
|
91 |
+
for page in pdf_reader.pages:
|
92 |
+
text += page.extract_text() + "\n"
|
93 |
+
|
94 |
+
elif file_ext == '.docx':
|
95 |
+
doc = Document(file_path)
|
96 |
+
for para in doc.paragraphs:
|
97 |
+
text += para.text + "\n"
|
98 |
+
|
99 |
+
else:
|
100 |
+
return False, "❌ Unsupported document format. Please upload PDF or DOCX."
|
101 |
+
|
102 |
+
# Clean and format text
|
103 |
+
text = text.replace('\x0c', '') # Remove form feed characters
|
104 |
+
text = textwrap.dedent(text) # Remove common leading whitespace
|
105 |
+
self.current_document_text = text
|
106 |
+
return True, f"✅ Extracted text from {os.path.basename(file_path)}"
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
return False, f"❌ Error processing document: {str(e)}"
|
110 |
+
|
111 |
+
def analyze_student_data(self, query):
|
112 |
+
"""Analyze student data using AI with streaming"""
|
113 |
+
if not query or not query.strip():
|
114 |
+
yield "⚠️ Please enter a valid question"
|
115 |
+
return
|
116 |
+
|
117 |
+
if self.current_df is None:
|
118 |
+
yield "⚠️ Please upload and load a student data file first"
|
119 |
+
return
|
120 |
+
|
121 |
+
data_summary = self._prepare_data_summary(self.current_df)
|
122 |
+
prompt = f"""You are an expert education analyst. Analyze the following student performance data:
|
123 |
+
{data_summary}
|
124 |
+
|
125 |
+
Question: {query}
|
126 |
+
|
127 |
+
Please include:
|
128 |
+
1. Direct answer to the question
|
129 |
+
2. Relevant statistics
|
130 |
+
3. Key insights
|
131 |
+
4. Actionable recommendations
|
132 |
+
|
133 |
+
Format the output with clear headings"""
|
134 |
+
|
135 |
+
optimized_config = openvino_genai.GenerationConfig(
|
136 |
+
max_new_tokens=500,
|
137 |
+
temperature=0.3,
|
138 |
+
top_p=0.9,
|
139 |
+
streaming=True
|
140 |
+
)
|
141 |
+
|
142 |
+
full_response = ""
|
143 |
+
try:
|
144 |
+
with self.pipe_lock:
|
145 |
+
token_iterator = self.mistral_pipe.generate(prompt, optimized_config, streaming=True)
|
146 |
+
for token in token_iterator:
|
147 |
+
full_response += token
|
148 |
+
yield full_response
|
149 |
+
except Exception as e:
|
150 |
+
yield f"❌ Error during analysis: {str(e)}"
|
151 |
+
|
152 |
+
def _prepare_data_summary(self, df):
|
153 |
+
"""Summarize the uploaded data"""
|
154 |
+
summary = f"Student performance data with {len(df)} rows and {len(df.columns)} columns.\n"
|
155 |
+
summary += "Columns: " + ", ".join(df.columns) + "\n"
|
156 |
+
summary += "First 3 rows:\n" + df.head(3).to_string(index=False)
|
157 |
+
return summary
|
158 |
+
|
159 |
+
def analyze_image(self, image, url, prompt):
|
160 |
+
"""Analyze image with InternVL model"""
|
161 |
+
try:
|
162 |
+
if image is not None:
|
163 |
+
image_source = image
|
164 |
+
elif url and url.startswith(("http://", "https://")):
|
165 |
+
response = requests.get(url)
|
166 |
+
image_source = Image.open(BytesIO(response.content)).convert("RGB")
|
167 |
+
else:
|
168 |
+
return "⚠️ Please upload an image or enter a valid URL"
|
169 |
+
|
170 |
+
# Convert to OpenVINO tensor
|
171 |
+
image_data = np.array(image_source.getdata()).reshape(
|
172 |
+
1, image_source.size[1], image_source.size[0], 3
|
173 |
+
).astype(np.byte)
|
174 |
+
image_tensor = ov.Tensor(image_data)
|
175 |
+
|
176 |
+
# Lazy initialize InternVL
|
177 |
+
if self.internvl_pipe is None:
|
178 |
+
self.internvl_pipe = openvino_genai.VLMPipeline("internvl-ov", device="CPU")
|
179 |
+
|
180 |
+
with self.pipe_lock:
|
181 |
+
self.internvl_pipe.start_chat()
|
182 |
+
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
|
183 |
+
self.internvl_pipe.finish_chat()
|
184 |
+
|
185 |
+
return output
|
186 |
+
except Exception as e:
|
187 |
+
return f"❌ Error: {str(e)}"
|
188 |
+
|
189 |
+
def process_audio(self, data, sr):
|
190 |
+
"""Process audio data for speech recognition"""
|
191 |
+
try:
|
192 |
+
# Convert to mono
|
193 |
+
if data.ndim > 1:
|
194 |
+
data = np.mean(data, axis=1) # Simple mono conversion
|
195 |
+
else:
|
196 |
+
data = data
|
197 |
+
|
198 |
+
# Convert to float32 and normalize
|
199 |
+
data = data.astype(np.float32)
|
200 |
+
max_val = np.max(np.abs(data)) + 1e-7
|
201 |
+
data /= max_val
|
202 |
+
|
203 |
+
# Simple noise reduction
|
204 |
+
data = np.clip(data, -0.5, 0.5)
|
205 |
+
|
206 |
+
# Trim silence
|
207 |
+
energy = np.abs(data)
|
208 |
+
threshold = np.percentile(energy, 25) # Simple threshold
|
209 |
+
mask = energy > threshold
|
210 |
+
indices = np.where(mask)[0]
|
211 |
+
|
212 |
+
if len(indices) > 0:
|
213 |
+
start = max(0, indices[0] - 1000)
|
214 |
+
end = min(len(data), indices[-1] + 1000)
|
215 |
+
data = data[start:end]
|
216 |
+
|
217 |
+
# Resample if needed using simpler method
|
218 |
+
if sr != 16000:
|
219 |
+
# Calculate new length
|
220 |
+
new_length = int(len(data) * 16000 / sr)
|
221 |
+
# Linear interpolation for resampling
|
222 |
+
data = np.interp(
|
223 |
+
np.linspace(0, len(data)-1, new_length),
|
224 |
+
np.arange(len(data)),
|
225 |
+
data
|
226 |
+
)
|
227 |
+
sr = 16000
|
228 |
+
|
229 |
+
return data
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Audio processing error: {e}")
|
232 |
+
return np.array([], dtype=np.float32)
|
233 |
+
|
234 |
+
def transcribe(self, audio):
|
235 |
+
"""Transcribe audio using Whisper model with improved error handling"""
|
236 |
+
if audio is None:
|
237 |
+
return ""
|
238 |
+
sr, data = audio
|
239 |
+
|
240 |
+
# Skip if audio is too short (less than 0.5 seconds)
|
241 |
+
if len(data)/sr < 0.5:
|
242 |
+
return ""
|
243 |
+
|
244 |
+
try:
|
245 |
+
processed = self.process_audio(data, sr)
|
246 |
+
|
247 |
+
# Skip if audio is still too short after processing
|
248 |
+
if len(processed) < 8000: # 0.5 seconds at 16kHz
|
249 |
+
return ""
|
250 |
+
|
251 |
+
# Use OpenVINO Whisper pipeline
|
252 |
+
result = self.whisper_pipe.generate(processed)
|
253 |
+
return result
|
254 |
+
except Exception as e:
|
255 |
+
print(f"Transcription error: {e}")
|
256 |
+
return "❌ Transcription failed - please try again"
|
257 |
+
|
258 |
+
def generate_lesson_plan(self, topic, duration, additional_instructions=""):
|
259 |
+
"""Generate a lesson plan based on document content"""
|
260 |
+
if not self.current_document_text:
|
261 |
+
return "⚠️ Please upload and process a document first"
|
262 |
+
|
263 |
+
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
|
264 |
+
|
265 |
+
**Core Requirements:**
|
266 |
+
1. TOPIC: {topic}
|
267 |
+
2. TOTAL DURATION: {duration} periods
|
268 |
+
3. ADDITIONAL INSTRUCTIONS: {additional_instructions or 'None'}
|
269 |
+
|
270 |
+
**Content Summary:**
|
271 |
+
{self.current_document_text[:2500]}... [truncated]
|
272 |
+
|
273 |
+
**Output Structure:**
|
274 |
+
1. PERIOD ALLOCATION (Break topic into {duration} logical segments):
|
275 |
+
- Period 1: [Subtopic 1]
|
276 |
+
- Period 2: [Subtopic 2]
|
277 |
+
...
|
278 |
+
|
279 |
+
2. LEARNING OBJECTIVES (Max 3 bullet points)
|
280 |
+
3. TEACHING ACTIVITIES (One engaging method per period)
|
281 |
+
4. RESOURCES (Key materials from document)
|
282 |
+
5. ASSESSMENT (Simple checks for understanding)
|
283 |
+
6. PAGE REFERENCES (Specific source pages)
|
284 |
+
|
285 |
+
**Key Rules:**
|
286 |
+
- Strictly divide content into exactly {duration} periods
|
287 |
+
- Prioritize document content over creativity
|
288 |
+
- Keep objectives measurable
|
289 |
+
- Use only document resources
|
290 |
+
- Make page references specific"""
|
291 |
+
|
292 |
+
|
293 |
+
optimized_config = openvino_genai.GenerationConfig(
|
294 |
+
max_new_tokens=1200,
|
295 |
+
temperature=0.4,
|
296 |
+
top_p=0.85
|
297 |
+
)
|
298 |
+
|
299 |
+
try:
|
300 |
+
with self.pipe_lock:
|
301 |
+
return self.mistral_pipe.generate(prompt, optimized_config)
|
302 |
+
except Exception as e:
|
303 |
+
return f"❌ Error generating lesson plan: {str(e)}"
|
304 |
+
|
305 |
+
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
|
306 |
+
"""Fetch unique images by requesting different result pages"""
|
307 |
+
if num <= 0:
|
308 |
+
return []
|
309 |
+
|
310 |
+
try:
|
311 |
+
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
|
312 |
+
image_links = []
|
313 |
+
seen_urls = set() # To track unique URLs
|
314 |
+
|
315 |
+
# Start from different positions to get unique images
|
316 |
+
for start_index in range(1, num * 2, 2):
|
317 |
+
if len(image_links) >= num:
|
318 |
+
break
|
319 |
+
|
320 |
+
res = service.cse().list(
|
321 |
+
q=query,
|
322 |
+
cx=GOOGLE_CSE_ID,
|
323 |
+
searchType="image",
|
324 |
+
num=1,
|
325 |
+
start=start_index
|
326 |
+
).execute()
|
327 |
+
|
328 |
+
if "items" in res and res["items"]:
|
329 |
+
item = res["items"][0]
|
330 |
+
# Skip duplicates
|
331 |
+
if item["link"] not in seen_urls:
|
332 |
+
image_links.append(item["link"])
|
333 |
+
seen_urls.add(item["link"])
|
334 |
+
|
335 |
+
return image_links[:num]
|
336 |
+
except Exception as e:
|
337 |
+
print(f"Error in image fetching: {e}")
|
338 |
+
return []
|
339 |
+
|
340 |
+
def stream_answer(self, message: str, max_tokens: int) -> str:
|
341 |
+
"""Stream tokens with typing indicator"""
|
342 |
+
optimized_config = openvino_genai.GenerationConfig(
|
343 |
+
max_new_tokens=max_tokens,
|
344 |
+
temperature=0.7,
|
345 |
+
top_p=0.9,
|
346 |
+
streaming=True
|
347 |
+
)
|
348 |
+
|
349 |
+
full_response = ""
|
350 |
+
try:
|
351 |
+
with self.pipe_lock:
|
352 |
+
token_iterator = self.mistral_pipe.generate(message, optimized_config, streaming=True)
|
353 |
+
for token in token_iterator:
|
354 |
+
full_response += token
|
355 |
+
yield full_response
|
356 |
+
# Periodic garbage collection
|
357 |
+
if len(full_response) % 20 == 0:
|
358 |
+
gc.collect()
|
359 |
+
except Exception as e:
|
360 |
+
yield f"❌ Error: {str(e)}"
|
361 |
+
|
362 |
+
# Initialize global object
|
363 |
+
ai_system = UnifiedAISystem()
|
364 |
+
|
365 |
+
# CSS styles with improved output box
|
366 |
+
css = """
|
367 |
+
.gradio-container {
|
368 |
+
background-color: #121212;
|
369 |
+
color: #fff;
|
370 |
+
}
|
371 |
+
.user-msg, .bot-msg {
|
372 |
+
padding: 12px 16px;
|
373 |
+
border-radius: 18px;
|
374 |
+
margin: 8px 0;
|
375 |
+
line-height: 1.5;
|
376 |
+
border: none;
|
377 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
378 |
+
}
|
379 |
+
.user-msg {
|
380 |
+
background: linear-gradient(135deg, #4a5568, #2d3748);
|
381 |
+
color: white;
|
382 |
+
margin-left: 20%;
|
383 |
+
border-bottom-right-radius: 5px;
|
384 |
+
border: none;
|
385 |
+
}
|
386 |
+
.bot-msg {
|
387 |
+
background: linear-gradient(135deg, #2d3748, #1a202c);
|
388 |
+
color: white;
|
389 |
+
margin-right: 20%;
|
390 |
+
border-bottom-left-radius: 5px;
|
391 |
+
border: none;
|
392 |
+
}
|
393 |
+
/* Remove top border from chat messages */
|
394 |
+
.user-msg, .bot-msg {
|
395 |
+
border-top: none !important;
|
396 |
+
}
|
397 |
+
/* Remove borders from chat container */
|
398 |
+
.chatbot > div {
|
399 |
+
border: none !important;
|
400 |
+
}
|
401 |
+
.chatbot .message {
|
402 |
+
border: none !important;
|
403 |
+
}
|
404 |
+
/* Improve scrollbar */
|
405 |
+
.chatbot::-webkit-scrollbar {
|
406 |
+
width: 8px;
|
407 |
+
}
|
408 |
+
.chatbot::-webkit-scrollbar-track {
|
409 |
+
background: #2a2a2a;
|
410 |
+
border-radius: 4px;
|
411 |
+
}
|
412 |
+
.chatbot::-webkit-scrollbar-thumb {
|
413 |
+
background: #4a5568;
|
414 |
+
border-radius: 4px;
|
415 |
+
}
|
416 |
+
.chatbot::-webkit-scrollbar-thumb:hover {
|
417 |
+
background: #5a6578;
|
418 |
+
}
|
419 |
+
/* Rest of the CSS remains the same */
|
420 |
+
.gradio-container {
|
421 |
+
background-color: #121212;
|
422 |
+
color: #fff;
|
423 |
+
}
|
424 |
+
.upload-box {
|
425 |
+
background-color: #333;
|
426 |
+
border-radius: 8px;
|
427 |
+
padding: 16px;
|
428 |
+
margin-bottom: 16px;
|
429 |
+
}
|
430 |
+
#question-input {
|
431 |
+
background-color: #333;
|
432 |
+
color: #fff;
|
433 |
+
border-radius: 8px;
|
434 |
+
padding: 12px;
|
435 |
+
border: 1px solid #555;
|
436 |
+
}
|
437 |
+
.mode-checkbox {
|
438 |
+
background-color: #333;
|
439 |
+
color: #fff;
|
440 |
+
border: 1px solid #555;
|
441 |
+
border-radius: 8px;
|
442 |
+
padding: 10px;
|
443 |
+
margin: 5px;
|
444 |
+
}
|
445 |
+
.slider-container {
|
446 |
+
margin-top: 20px;
|
447 |
+
padding: 15px;
|
448 |
+
border-radius: 10px;
|
449 |
+
background-color: #2a2a2a;
|
450 |
+
}
|
451 |
+
.system-info {
|
452 |
+
background-color: #7B9BDB;
|
453 |
+
padding: 15px;
|
454 |
+
border-radius: 8px;
|
455 |
+
margin: 15px 0;
|
456 |
+
border-left: 4px solid #1890ff;
|
457 |
+
}
|
458 |
+
.chat-image {
|
459 |
+
cursor: pointer;
|
460 |
+
transition: transform 0.2s;
|
461 |
+
max-height: 100px;
|
462 |
+
margin: 4px;
|
463 |
+
border-radius: 8px;
|
464 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
465 |
+
}
|
466 |
+
.chat-image:hover {
|
467 |
+
transform: scale(1.05);
|
468 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
469 |
+
}
|
470 |
+
.modal {
|
471 |
+
position: fixed;
|
472 |
+
top: 0;
|
473 |
+
left: 0;
|
474 |
+
width: 100%;
|
475 |
+
height: 100%;
|
476 |
+
background: rgba(0,0,0,0.8);
|
477 |
+
display: none;
|
478 |
+
z-index: 1000;
|
479 |
+
cursor: zoom-out;
|
480 |
+
}
|
481 |
+
.modal-content {
|
482 |
+
position: absolute;
|
483 |
+
top: 50%;
|
484 |
+
left: 50%;
|
485 |
+
transform: translate(-50%, -50%);
|
486 |
+
max-width: 90%;
|
487 |
+
max-height: 90%;
|
488 |
+
background: white;
|
489 |
+
padding: 10px;
|
490 |
+
border-radius: 12px;
|
491 |
+
}
|
492 |
+
.modal-img {
|
493 |
+
width: auto;
|
494 |
+
height: auto;
|
495 |
+
max-width: 100%;
|
496 |
+
max-height: 100%;
|
497 |
+
border-radius: 8px;
|
498 |
+
}
|
499 |
+
.typing-indicator {
|
500 |
+
display: inline-block;
|
501 |
+
position: relative;
|
502 |
+
width: 40px;
|
503 |
+
height: 20px;
|
504 |
+
}
|
505 |
+
.typing-dot {
|
506 |
+
display: inline-block;
|
507 |
+
width: 6px;
|
508 |
+
height: 6px;
|
509 |
+
border-radius: 50%;
|
510 |
+
background-color: #fff;
|
511 |
+
position: absolute;
|
512 |
+
animation: typing 1.4s infinite ease-in-out;
|
513 |
+
}
|
514 |
+
.typing-dot:nth-child(1) {
|
515 |
+
left: 0;
|
516 |
+
animation-delay: 0s;
|
517 |
+
}
|
518 |
+
.typing-dot:nth-child(2) {
|
519 |
+
left: 12px;
|
520 |
+
animation-delay: 0.2s;
|
521 |
+
}
|
522 |
+
.typing-dot:nth-child(3) {
|
523 |
+
left: 24px;
|
524 |
+
animation-delay: 0.4s;
|
525 |
+
}
|
526 |
+
@keyframes typing {
|
527 |
+
0%, 60%, 100% { transform: translateY(0); }
|
528 |
+
30% { transform: translateY(-5px); }
|
529 |
+
}
|
530 |
+
.lesson-plan {
|
531 |
+
background: linear-gradient(135deg, #1a202c, #2d3748);
|
532 |
+
padding: 15px;
|
533 |
+
border-radius: 12px;
|
534 |
+
margin: 10px 0;
|
535 |
+
border-left: 4px solid #4a9df0;
|
536 |
+
}
|
537 |
+
.lesson-section {
|
538 |
+
margin-bottom: 15px;
|
539 |
+
padding-bottom: 10px;
|
540 |
+
border-bottom: 1px solid #4a5568;
|
541 |
+
}
|
542 |
+
.lesson-title {
|
543 |
+
font-size: 1.2em;
|
544 |
+
font-weight: bold;
|
545 |
+
color: #4a9df0;
|
546 |
+
margin-bottom: 8px;
|
547 |
+
}
|
548 |
+
.page-ref {
|
549 |
+
background-color: #4a5568;
|
550 |
+
padding: 3px 8px;
|
551 |
+
border-radius: 4px;
|
552 |
+
font-size: 0.9em;
|
553 |
+
display: inline-block;
|
554 |
+
margin: 3px;
|
555 |
+
}
|
556 |
+
"""
|
557 |
+
|
558 |
+
# Create Gradio interface
|
559 |
+
with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
|
560 |
+
gr.Markdown("# 🤖 Unified EDU Assistant by Phanindra Reddy K")
|
561 |
+
|
562 |
+
# System info banner
|
563 |
+
gr.HTML("""
|
564 |
+
<div class="system-info">
|
565 |
+
<strong>Multi-Modal AI Assistant</strong>
|
566 |
+
<ul>
|
567 |
+
<li>Text & Voice Chat with Mistral-7B</li>
|
568 |
+
<li>Image Understanding with InternVL</li>
|
569 |
+
<li>Student Data Analysis</li>
|
570 |
+
<li>Visual Search with Google Images</li>
|
571 |
+
<li>Lesson Planning from Documents</li>
|
572 |
+
</ul>
|
573 |
+
</div>
|
574 |
+
""")
|
575 |
+
|
576 |
+
# Modal for image preview
|
577 |
+
modal_html = """
|
578 |
+
<div class="modal" id="imageModal" onclick="this.style.display='none'">
|
579 |
+
<div class="modal-content">
|
580 |
+
<img class="modal-img" id="expandedImg">
|
581 |
+
</div>
|
582 |
+
</div>
|
583 |
+
<script>
|
584 |
+
function showImage(url) {
|
585 |
+
document.getElementById('expandedImg').src = url;
|
586 |
+
document.getElementById('imageModal').style.display = 'block';
|
587 |
+
}
|
588 |
+
</script>
|
589 |
+
"""
|
590 |
+
gr.HTML(modal_html)
|
591 |
+
|
592 |
+
chat_state = gr.State([])
|
593 |
+
with gr.Column(scale=2, elem_classes="chat-container"):
|
594 |
+
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False,
|
595 |
+
avatar_images=("user.png", "bot.png"), show_label=False)
|
596 |
+
|
597 |
+
# Mode selection
|
598 |
+
with gr.Row():
|
599 |
+
chat_mode = gr.Checkbox(label="💬 General Chat", value=True, elem_classes="mode-checkbox")
|
600 |
+
student_mode = gr.Checkbox(label="🎓 Student Analytics", value=False, elem_classes="mode-checkbox")
|
601 |
+
image_mode = gr.Checkbox(label="🖼️ Image Analysis", value=False, elem_classes="mode-checkbox")
|
602 |
+
lesson_mode = gr.Checkbox(label="📝 Lesson Planning", value=False, elem_classes="mode-checkbox")
|
603 |
+
|
604 |
+
# Dynamic input fields
|
605 |
+
with gr.Column() as chat_inputs:
|
606 |
+
include_images = gr.Checkbox(label="Include Visuals", value=True)
|
607 |
+
user_input = gr.Textbox(
|
608 |
+
placeholder="Type your question here...",
|
609 |
+
label="Your Question",
|
610 |
+
container=False,
|
611 |
+
elem_id="question-input"
|
612 |
+
)
|
613 |
+
with gr.Row():
|
614 |
+
max_tokens = gr.Slider(
|
615 |
+
minimum=10,
|
616 |
+
maximum=1000,
|
617 |
+
value=100,
|
618 |
+
step=10,
|
619 |
+
label="Response Length (Tokens)"
|
620 |
+
)
|
621 |
+
num_images = gr.Slider(
|
622 |
+
minimum=0,
|
623 |
+
maximum=5,
|
624 |
+
value=1,
|
625 |
+
step=1,
|
626 |
+
label="Number of Images",
|
627 |
+
visible=True
|
628 |
+
)
|
629 |
+
|
630 |
+
with gr.Column(visible=False) as student_inputs:
|
631 |
+
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
|
632 |
+
student_question = gr.Textbox(
|
633 |
+
placeholder="Ask questions about student data...",
|
634 |
+
label="Your Question",
|
635 |
+
elem_id="question-input"
|
636 |
+
)
|
637 |
+
student_status = gr.Markdown("No file loaded")
|
638 |
+
|
639 |
+
with gr.Column(visible=False) as image_inputs:
|
640 |
+
image_upload = gr.Image(type="pil", label="Upload Image")
|
641 |
+
image_url = gr.Textbox(
|
642 |
+
label="OR Enter Image URL",
|
643 |
+
placeholder="https://example.com/image.jpg",
|
644 |
+
elem_id="question-input"
|
645 |
+
)
|
646 |
+
image_question = gr.Textbox(
|
647 |
+
placeholder="Ask questions about the image...",
|
648 |
+
label="Your Question",
|
649 |
+
elem_id="question-input"
|
650 |
+
)
|
651 |
+
|
652 |
+
# Lesson planning section
|
653 |
+
with gr.Column(visible=False) as lesson_inputs:
|
654 |
+
gr.Markdown("### 📚 Lesson Planning")
|
655 |
+
doc_upload = gr.File(
|
656 |
+
label="Upload Curriculum Document (PDF/DOCX)",
|
657 |
+
file_types=[".pdf", ".docx"],
|
658 |
+
type="filepath"
|
659 |
+
)
|
660 |
+
doc_status = gr.Markdown("No document uploaded")
|
661 |
+
|
662 |
+
with gr.Row():
|
663 |
+
topic_input = gr.Textbox(
|
664 |
+
label="Lesson Topic",
|
665 |
+
placeholder="Enter the main topic for the lesson plan"
|
666 |
+
)
|
667 |
+
duration_input = gr.Number(
|
668 |
+
label="Total Periods",
|
669 |
+
value=5,
|
670 |
+
minimum=1,
|
671 |
+
maximum=20,
|
672 |
+
step=1
|
673 |
+
)
|
674 |
+
|
675 |
+
additional_instructions = gr.Textbox(
|
676 |
+
label="Additional Requirements (optional)",
|
677 |
+
placeholder="Specific teaching methods, resources, or special considerations..."
|
678 |
+
)
|
679 |
+
|
680 |
+
generate_btn = gr.Button("Generate Lesson Plan", variant="primary")
|
681 |
+
|
682 |
+
# Common controls
|
683 |
+
with gr.Row():
|
684 |
+
submit_btn = gr.Button("Send", variant="primary")
|
685 |
+
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
|
686 |
+
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
|
687 |
+
|
688 |
+
processing = gr.HTML("""
|
689 |
+
<div style="display: none;">
|
690 |
+
<div class="processing">🔮 Processing your request...</div>
|
691 |
+
</div>
|
692 |
+
""")
|
693 |
+
|
694 |
+
# Event handlers
|
695 |
+
def toggle_modes(chat, student, image, lesson):
|
696 |
+
return [
|
697 |
+
gr.update(visible=chat),
|
698 |
+
gr.update(visible=student),
|
699 |
+
gr.update(visible=image),
|
700 |
+
gr.update(visible=lesson)
|
701 |
+
]
|
702 |
+
|
703 |
+
def load_student_file(file_path):
|
704 |
+
success, message = ai_system.load_data(file_path)
|
705 |
+
return message
|
706 |
+
|
707 |
+
def process_document(file_path):
|
708 |
+
if not file_path:
|
709 |
+
return "⚠️ Please select a document first"
|
710 |
+
success, message = ai_system.extract_text_from_document(file_path)
|
711 |
+
return message
|
712 |
+
|
713 |
+
def render_history(history):
|
714 |
+
"""Render chat history with images and proper formatting"""
|
715 |
+
rendered = []
|
716 |
+
for user_msg, bot_msg, image_links in history:
|
717 |
+
# Apply proper styling to messages
|
718 |
+
user_html = f"<div class='user-msg'>{user_msg}</div>"
|
719 |
+
|
720 |
+
# Special formatting for lesson plans
|
721 |
+
if "Lesson Plan:" in bot_msg:
|
722 |
+
bot_html = f"<div class='lesson-plan'>{bot_msg}</div>"
|
723 |
+
else:
|
724 |
+
bot_html = f"<div class='bot-msg'>{bot_msg}</div>"
|
725 |
+
|
726 |
+
# Add images if available
|
727 |
+
if image_links:
|
728 |
+
images_html = "".join(
|
729 |
+
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
|
730 |
+
for url in image_links
|
731 |
+
)
|
732 |
+
bot_html += f"<br><br><b>📸 Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
|
733 |
+
|
734 |
+
rendered.append((user_html, bot_html))
|
735 |
+
return rendered
|
736 |
+
|
737 |
+
def respond(message, chat_hist, chat, student, image, lesson,
|
738 |
+
tokens, student_q, image_q, image_upload, image_url,
|
739 |
+
include_visuals, num_imgs):
|
740 |
+
# If in lesson planning mode, skip this handler
|
741 |
+
if lesson:
|
742 |
+
return chat_hist, message
|
743 |
+
|
744 |
+
# Determine the actual question based on mode
|
745 |
+
if chat:
|
746 |
+
actual_question = message
|
747 |
+
elif student:
|
748 |
+
actual_question = student_q
|
749 |
+
elif image:
|
750 |
+
actual_question = image_q
|
751 |
+
else:
|
752 |
+
actual_question = message
|
753 |
+
|
754 |
+
# Immediately show user question in chat
|
755 |
+
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
|
756 |
+
chat_hist.append((actual_question, typing_html, []))
|
757 |
+
yield render_history(chat_hist), ""
|
758 |
+
|
759 |
+
if chat:
|
760 |
+
# General chat mode
|
761 |
+
full_response = ""
|
762 |
+
for chunk in ai_system.stream_answer(message, tokens):
|
763 |
+
full_response = chunk
|
764 |
+
# Update with current response
|
765 |
+
chat_hist[-1] = (actual_question, full_response, [])
|
766 |
+
yield render_history(chat_hist), ""
|
767 |
+
|
768 |
+
# Fetch images if requested
|
769 |
+
image_links = []
|
770 |
+
if include_visuals and num_imgs > 0:
|
771 |
+
image_links = ai_system.fetch_images(message, num_imgs)
|
772 |
+
|
773 |
+
# Update with final response and images
|
774 |
+
chat_hist[-1] = (actual_question, full_response, image_links)
|
775 |
+
yield render_history(chat_hist), ""
|
776 |
+
|
777 |
+
elif student:
|
778 |
+
# Student analytics mode
|
779 |
+
if ai_system.current_df is None:
|
780 |
+
chat_hist[-1] = (actual_question, "⚠️ Please upload a student data file first", [])
|
781 |
+
yield render_history(chat_hist), ""
|
782 |
+
else:
|
783 |
+
response = ""
|
784 |
+
for chunk in ai_system.analyze_student_data(student_q):
|
785 |
+
response = chunk
|
786 |
+
chat_hist[-1] = (actual_question, response, [])
|
787 |
+
yield render_history(chat_hist), ""
|
788 |
+
|
789 |
+
elif image:
|
790 |
+
# Image analysis mode
|
791 |
+
if not image_upload and not image_url:
|
792 |
+
chat_hist[-1] = (actual_question, "⚠️ Please upload an image or enter a URL", [])
|
793 |
+
yield render_history(chat_hist), ""
|
794 |
+
else:
|
795 |
+
try:
|
796 |
+
result = ai_system.analyze_image(image_upload, image_url, image_q)
|
797 |
+
chat_hist[-1] = (actual_question, result, [])
|
798 |
+
yield render_history(chat_hist), ""
|
799 |
+
except Exception as e:
|
800 |
+
error_msg = f"❌ Error analyzing image: {str(e)}"
|
801 |
+
chat_hist[-1] = (actual_question, error_msg, [])
|
802 |
+
yield render_history(chat_hist), ""
|
803 |
+
|
804 |
+
# Trim history if too long
|
805 |
+
if len(chat_hist) > MAX_HISTORY_TURNS:
|
806 |
+
chat_hist = chat_hist[-MAX_HISTORY_TURNS:]
|
807 |
+
|
808 |
+
yield render_history(chat_hist), ""
|
809 |
+
|
810 |
+
def generate_lesson_plan(topic, duration, instructions, chat_hist):
|
811 |
+
if not topic:
|
812 |
+
return chat_hist, "⚠️ Please enter a lesson topic"
|
813 |
+
|
814 |
+
# Show processing message
|
815 |
+
processing_msg = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
|
816 |
+
chat_hist.append((f"Generate lesson plan for: {topic}", processing_msg, []))
|
817 |
+
yield render_history(chat_hist), ""
|
818 |
+
|
819 |
+
# Generate the plan
|
820 |
+
plan = ai_system.generate_lesson_plan(topic, duration, instructions)
|
821 |
+
|
822 |
+
# Format with proper headings
|
823 |
+
formatted_plan = f"""
|
824 |
+
<div class='lesson-plan'>
|
825 |
+
<div class='lesson-title'>📝 Lesson Plan: {topic} ({duration} periods)</div>
|
826 |
+
{plan}
|
827 |
+
</div>
|
828 |
+
"""
|
829 |
+
|
830 |
+
# Update chat history with final plan
|
831 |
+
chat_hist[-1] = (
|
832 |
+
f"Generate lesson plan for: {topic}",
|
833 |
+
formatted_plan,
|
834 |
+
[]
|
835 |
+
)
|
836 |
+
yield render_history(chat_hist), ""
|
837 |
+
|
838 |
+
# Mode toggles
|
839 |
+
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
840 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
841 |
+
student_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
842 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
843 |
+
image_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
844 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
845 |
+
lesson_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
|
846 |
+
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
|
847 |
+
|
848 |
+
# File upload handler
|
849 |
+
file_upload.change(fn=load_student_file, inputs=file_upload, outputs=student_status)
|
850 |
+
|
851 |
+
# Document upload handler
|
852 |
+
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
|
853 |
+
|
854 |
+
# Voice transcription
|
855 |
+
def transcribe_audio(audio):
|
856 |
+
return ai_system.transcribe(audio)
|
857 |
+
|
858 |
+
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
|
859 |
+
|
860 |
+
# Submit handler
|
861 |
+
submit_btn.click(
|
862 |
+
fn=respond,
|
863 |
+
inputs=[
|
864 |
+
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
|
865 |
+
max_tokens, student_question, image_question, image_upload, image_url,
|
866 |
+
include_images, num_images
|
867 |
+
],
|
868 |
+
outputs=[chatbot, user_input]
|
869 |
+
)
|
870 |
+
|
871 |
+
# Lesson plan generation button
|
872 |
+
generate_btn.click(
|
873 |
+
fn=generate_lesson_plan,
|
874 |
+
inputs=[topic_input, duration_input, additional_instructions, chat_state],
|
875 |
+
outputs=[chatbot, topic_input]
|
876 |
+
)
|
877 |
+
|
878 |
+
if __name__ == "__main__":
|
879 |
+
demo.launch(share=True, debug=True)
|
requirements.txt
CHANGED
@@ -1,6 +1,15 @@
|
|
1 |
-
gradio==4.26.0
|
2 |
-
openvino-genai>=1.0.0
|
3 |
-
librosa
|
4 |
-
numpy>=1.24.0
|
5 |
-
scipy>=1.10.0
|
6 |
-
huggingface_hub>=0.21.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.26.0
|
2 |
+
openvino-genai>=1.0.0
|
3 |
+
librosa==0.10.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
scipy>=1.10.0
|
6 |
+
huggingface_hub>=0.21.4
|
7 |
+
google-api-python-client>=2.0.0
|
8 |
+
pandas>=2.0.0
|
9 |
+
requests>=2.31.0
|
10 |
+
Pillow>=10.0.0
|
11 |
+
py-cpuinfo>=9.0.0
|
12 |
+
openvino>=2023.2.0
|
13 |
+
PyPDF2>=3.0.0
|
14 |
+
python-docx>=1.1.0
|
15 |
+
soundfile>=0.12.0
|