Spaces:
Running
Running
File size: 27,733 Bytes
2ba6c15 f1cbd65 2ba6c15 d78c33d 2ba6c15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import time
import gradio as gr
import pandas as pd
import openvino_genai
from huggingface_hub import snapshot_download
from threading import Lock, Event
import os
import numpy as np
import requests
from PIL import Image
from io import BytesIO
import cpuinfo
import openvino as ov
import librosa
from googleapiclient.discovery import build
import gc
from PyPDF2 import PdfReader
from docx import Document
import textwrap
from queue import Queue, Empty
from concurrent.futures import ThreadPoolExecutor
from typing import Generator
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
DEFAULT_MAX_TOKENS = 4096
DEFAULT_NUM_IMAGES = 1
MAX_HISTORY_TURNS = 3
MAX_TOKENS_LIMIT = 4096
class UnifiedAISystem:
def __init__(self):
self.pipe_lock = Lock()
self.current_df = None
self.mistral_pipe = None
self.internvl_pipe = None
self.whisper_pipe = None
self.current_document_text = None
self.generation_executor = ThreadPoolExecutor(max_workers=3)
self.initialize_models()
def initialize_models(self):
"""Initialize all required models"""
if not os.path.exists("mistral-ov"):
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
if not os.path.exists("internvl-ov"):
snapshot_download(repo_id="OpenVINO/InternVL2-1B-int8-ov", local_dir="internvl-ov")
if not os.path.exists("whisper-ov-model"):
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
cpu_features = cpuinfo.get_cpu_info()['flags']
config_options = {}
if 'avx512' in cpu_features:
config_options["ENFORCE_BF16"] = "YES"
elif 'avx2' in cpu_features:
config_options["INFERENCE_PRECISION_HINT"] = "f32"
# Initialize Mistral model
self.mistral_pipe = openvino_genai.LLMPipeline(
"mistral-ov",
device="CPU",
config={"PERFORMANCE_HINT": "THROUGHPUT", **config_options}
)
self.whisper_pipe = openvino_genai.WhisperPipeline("whisper-ov-model", device="CPU")
def load_data(self, file_path):
"""Load student data from file"""
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.csv':
self.current_df = pd.read_csv(file_path)
elif file_ext in ['.xlsx', '.xls']:
self.current_df = pd.read_excel(file_path)
else:
return False, "โ Unsupported file format. Please upload a .csv or .xlsx file."
return True, f"โ
Loaded {len(self.current_df)} records from {os.path.basename(file_path)}"
except Exception as e:
return False, f"โ Error loading file: {str(e)}"
def extract_text_from_document(self, file_path):
"""Extract text from PDF or DOCX documents"""
text = ""
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
with open(file_path, 'rb') as file:
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
elif file_ext == '.docx':
doc = Document(file_path)
for para in doc.paragraphs:
text += para.text + "\n"
else:
return False, "โ Unsupported document format. Please upload PDF or DOCX."
# Clean and format text
text = text.replace('\x0c', '')
text = textwrap.dedent(text)
self.current_document_text = text
return True, f"โ
Extracted text from {os.path.basename(file_path)}"
except Exception as e:
return False, f"โ Error processing document: {str(e)}"
def generate_text_stream(self, prompt: str, max_tokens: int) -> Generator[str, None, None]:
"""Unified text generation with queued token streaming"""
start_time = time.time()
response_queue = Queue()
completion_event = Event()
error = [None]
optimized_config = openvino_genai.GenerationConfig(
max_new_tokens=max_tokens,
temperature=0.3,
top_p=0.9,
streaming=True,
streaming_interval=5
)
def callback(tokens):
response_queue.put("".join(tokens))
return openvino_genai.StreamingStatus.RUNNING
def generate():
try:
with self.pipe_lock:
self.mistral_pipe.generate(prompt, optimized_config, callback)
except Exception as e:
error[0] = str(e)
finally:
completion_event.set()
self.generation_executor.submit(generate)
accumulated = []
token_count = 0
last_gc = time.time()
while not completion_event.is_set() or not response_queue.empty():
if error[0]:
yield f"โ Error: {error[0]}"
print(f"Stream generation time: {time.time() - start_time:.2f} seconds")
return
try:
token_batch = response_queue.get(timeout=0.1)
accumulated.append(token_batch)
token_count += len(token_batch)
yield "".join(accumulated)
if time.time() - last_gc > 2.0:
gc.collect()
last_gc = time.time()
except Empty:
continue
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
yield "".join(accumulated)
def analyze_student_data(self, query, max_tokens=4098):
"""Analyze student data using AI with streaming"""
if not query or not query.strip():
yield "โ ๏ธ Please enter a valid question"
return
if self.current_df is None:
yield "โ ๏ธ Please upload and load a student data file first"
return
data_summary = self._prepare_data_summary(self.current_df)
prompt = f"""You are an expert education analyst. Analyze the following student performance data:
{data_summary}
Question: {query}
Please include:
1. Direct answer to the question
2. Relevant statistics
3. Key insights
4. Actionable recommendations
Format the output with clear headings"""
yield from self.generate_text_stream(prompt, max_tokens)
def _prepare_data_summary(self, df):
"""Summarize the uploaded data"""
summary = f"Student performance data with {len(df)} rows and {len(df.columns)} columns.\n"
summary += "Columns: " + ", ".join(df.columns) + "\n"
summary += "First 3 rows:\n" + df.head(3).to_string(index=False)
return summary
def analyze_image(self, image, url, prompt):
"""Analyze image with InternVL model (synchronous, no streaming)"""
try:
if image is not None:
image_source = image
elif url and url.startswith(("http://", "https://")):
response = requests.get(url)
image_source = Image.open(BytesIO(response.content)).convert("RGB")
else:
return "โ ๏ธ Please upload an image or enter a valid URL"
image_data = np.array(image_source.getdata()).reshape(
1, image_source.size[1], image_source.size[0], 3
).astype(np.byte)
image_tensor = ov.Tensor(image_data)
if self.internvl_pipe is None:
self.internvl_pipe = openvino_genai.VLMPipeline("internvl-ov", device="CPU")
with self.pipe_lock:
self.internvl_pipe.start_chat()
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=4090)
self.internvl_pipe.finish_chat()
return output
except Exception as e:
return f"โ Error: {str(e)}"
def process_audio(self, data, sr):
"""Process audio data for speech recognition"""
try:
if data.ndim > 1:
data = np.mean(data, axis=1)
else:
data = data
data = data.astype(np.float32)
max_val = np.max(np.abs(data)) + 1e-7
data /= max_val
# Simple noise reduction
data = np.clip(data, -0.5, 0.5)
# Trim silence
energy = np.abs(data)
threshold = np.percentile(energy, 25)
mask = energy > threshold
indices = np.where(mask)[0]
if len(indices) > 0:
start = max(0, indices[0] - 1000)
end = min(len(data), indices[-1] + 1000)
data = data[start:end]
if sr != 16000:
new_length = int(len(data) * 16000 / sr)
data = np.interp(
np.linspace(0, len(data)-1, new_length),
np.arange(len(data)),
data
)
sr = 16000
return data
except Exception as e:
print(f"Audio processing error: {e}")
return np.array([], dtype=np.float32)
def transcribe(self, audio):
"""Transcribe audio using Whisper model with improved error handling"""
if audio is None:
return ""
sr, data = audio
if len(data)/sr < 0.5:
return ""
try:
processed = self.process_audio(data, sr)
if len(processed) < 8000:
return ""
result = self.whisper_pipe.generate(processed)
return result
except Exception as e:
print(f"Transcription error: {e}")
return "โ Transcription failed - please try again"
def generate_lesson_plan(self, topic, duration, additional_instructions="", max_tokens=4096):
"""Generate a lesson plan based on document content"""
if not topic:
yield "โ ๏ธ Please enter a lesson topic"
return
if not self.current_document_text:
yield "โ ๏ธ Please upload and process a document first"
return
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
**Core Requirements:**
1. TOPIC: {topic}
2. TOTAL DURATION: {duration} periods
3. ADDITIONAL INSTRUCTIONS: {additional_instructions or 'None'}
**Content Summary:**
{self.current_document_text[:2500]}... [truncated]
**Output Structure:**
1. PERIOD ALLOCATION (Break topic into {duration} logical segments):
- Period 1: [Subtopic 1]
- Period 2: [Subtopic 2]
...
2. LEARNING OBJECTIVES (Max 3 bullet points)
3. TEACHING ACTIVITIES (One engaging method per period)
4. RESOURCES (Key materials from document)
5. ASSESSMENT (Simple checks for understanding)
6. PAGE REFERENCES (Specific source pages)
**Key Rules:**
- Strictly divide content into exactly {duration} periods
- Prioritize document content over creativity
- Keep objectives measurable
- Use only document resources
- Make page references specific"""
yield from self.generate_text_stream(prompt, max_tokens)
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
"""Fetch unique images by requesting different result pages"""
if num <= 0:
return []
try:
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
image_links = []
seen_urls = set()
for start_index in range(1, num * 2, 2):
if len(image_links) >= num:
break
res = service.cse().list(
q=query,
cx=GOOGLE_CSE_ID,
searchType="image",
num=1,
start=start_index
).execute()
if "items" in res and res["items"]:
item = res["items"][0]
# Skip duplicates
if item["link"] not in seen_urls:
image_links.append(item["link"])
seen_urls.add(item["link"])
return image_links[:num]
except Exception as e:
print(f"Error in image fetching: {e}")
return []
ai_system = UnifiedAISystem()
css = """
:root {
--bg: #0D0D0D;
--surface: #1F1F1F;
--primary: #BB86FC;
--secondary: #03DAC6;
--accent: #CF6679;
--success: #4CAF50;
--warning: #FFB300;
--text: #FFFFFF;
--subtext: #B0B0B0;
--divider: #333333;
}
body, .gradio-container { background: var(--bg); color: var(--text); }
.user-msg,
.bot-msg,
.upload-box,
#question-input,
.mode-checkbox,
.system-info,
.lesson-plan { background: var(--surface); border-radius: 8px; color: var(--text); }
.user-msg,
.bot-msg { padding: 12px 16px; margin: 8px 0; line-height:1.5; border-left:4px solid var(--primary); box-shadow:0 2px 6px rgba(0,0,0,0.5); }
.bot-msg { border-color: var(--secondary); }
.upload-box { padding:16px; margin-bottom:16px; border:1px solid var(--divider); }
#question-input,
.mode-checkbox { padding:12px; border:1px solid var(--divider); }
.slider-container { margin:20px 0; padding:15px; border-radius:10px; background:var(--secondary); }
.system-info { padding:15px; margin:15px 0; border-left:4px solid var(--primary); }
.chat-image { max-height:100px; margin:4px; border-radius:8px; box-shadow:0 2px 6px rgba(0,0,0,0.5); cursor:pointer; transition:transform .2s; }
.chat-image:hover { transform:scale(1.05); box-shadow:0 4px 10px rgba(0,0,0,0.7); }
.modal { position:fixed; inset:0; background:rgba(0,0,0,0.9); display:none; cursor:zoom-out; }
.modal-content { position:absolute; top:50%; left:50%; transform:translate(-50%,-50%); max-width:90%; max-height:90%; padding:10px; border-radius:12px; background:var(--surface); }
.modal-img { max-width:100%; max-height:100%; border-radius:8px; }
.typing-indicator { display:inline-block; position:relative; width:40px; height:20px; }
.typing-dot { width:6px; height:6px; border-radius:50%; background:var(--text); position:absolute; animation:typing 1.4s infinite ease-in-out; }
.typing-dot:nth-child(1){left:0;}
.typing-dot:nth-child(2){left:12px;animation-delay:.2s}
.typing-dot:nth-child(3){left:24px;animation-delay:.4s}
@keyframes typing{0%,60%,100%{transform:translateY(0)}30%{transform:translateY(-5px)}}
.lesson-title { font-size:1.2em; font-weight:bold; color:var(--primary); margin-bottom:8px; }
.page-ref { display:inline-block; padding:3px 8px; margin:3px; border-radius:4px; background:var(--primary); color:var(--text); font-size:.9em; }
/* Scrollbar */
.chatbot::-webkit-scrollbar{width:8px}
.chatbot::-webkit-scrollbar-track{background:var(--surface);border-radius:4px}
.chatbot::-webkit-scrollbar-thumb{background:var(--primary);border-radius:4px}
.chatbot::-webkit-scrollbar-thumb:hover{background:var(--secondary)}
"""
with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
gr.Markdown("# ๐ค Unified EDU Assistant by ALPHA")
gr.HTML("""
<div class="system-info">
<strong>Multi-Modal AI Assistant</strong>
<ul>
<li>Text & Voice Chat with Mistral-7B</li>
<li>Image Understanding with InternVL</li>
<li>Student Data Analysis</li>
<li>Visual Search with Google Images</li>
<li>Lesson Planning from Documents</li>
</ul>
</div>
""")
modal_html = """
<div class="modal" id="imageModal" onclick="this.style.display='none'">
<div class="modal-content">
<img class="modal-img" id="expandedImg">
</div>
</div>
<script>
function showImage(url) {
document.getElementById('expandedImg').src = url;
document.getElementById('imageModal').style.display = 'block';
}
</script>
"""
gr.HTML(modal_html)
chat_state = gr.State([])
with gr.Column(scale=2, elem_classes="chat-container"):
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False,
avatar_images=("user.png", "bot.png"), show_label=False)
with gr.Row():
chat_mode = gr.Checkbox(label="๐ฌ General Chat", value=True, elem_classes="mode-checkbox")
student_mode = gr.Checkbox(label="๐ Student Analytics", value=False, elem_classes="mode-checkbox")
image_mode = gr.Checkbox(label="๐ผ๏ธ Image Analysis", value=False, elem_classes="mode-checkbox")
lesson_mode = gr.Checkbox(label="๐ Lesson Planning", value=False, elem_classes="mode-checkbox")
with gr.Column() as chat_inputs:
include_images = gr.Checkbox(label="Include Visuals", value=True)
user_input = gr.Textbox(
placeholder="Type your question here...",
label="Your Question",
container=False,
elem_id="question-input"
)
with gr.Row():
max_tokens = gr.Slider(
minimum=10,
maximum=7910,
value=2048,
step=100,
label="Response Length (Tokens)"
)
num_images = gr.Slider(
minimum=0,
maximum=5,
value=1,
step=1,
label="Number of Images",
visible=True
)
with gr.Column(visible=False) as student_inputs:
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
student_question = gr.Textbox(
placeholder="Ask questions about student data...",
label="Your Question",
elem_id="question-input"
)
student_status = gr.Markdown("No file loaded")
with gr.Column(visible=False) as image_inputs:
image_upload = gr.Image(type="pil", label="Upload Image")
image_url = gr.Textbox(
label="OR Enter Image URL",
placeholder="https://example.com/image.jpg",
elem_id="question-input"
)
image_question = gr.Textbox(
placeholder="Ask questions about the image...",
label="Your Question",
elem_id="question-input"
)
with gr.Column(visible=False) as lesson_inputs:
gr.Markdown("### ๐ Lesson Planning")
doc_upload = gr.File(
label="Upload Curriculum Document (PDF/DOCX)",
file_types=[".pdf", ".docx"],
type="filepath"
)
doc_status = gr.Markdown("No document uploaded")
with gr.Row():
topic_input = gr.Textbox(
label="Lesson Topic",
placeholder="Enter the main topic for the lesson plan"
)
duration_input = gr.Number(
label="Total Periods",
value=5,
minimum=1,
maximum=20,
step=1
)
additional_instructions = gr.Textbox(
label="Additional Requirements (optional)",
placeholder="Specific teaching methods, resources, or special considerations..."
)
generate_btn = gr.Button("Generate Lesson Plan", variant="primary")
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
def toggle_modes(chat, student, image, lesson):
return [
gr.update(visible=chat),
gr.update(visible=student),
gr.update(visible=image),
gr.update(visible=lesson)
]
def load_student_file(file_path):
success, message = ai_system.load_data(file_path)
return message
def process_document(file_path):
if not file_path:
return "โ ๏ธ Please select a document first"
success, message = ai_system.extract_text_from_document(file_path)
return message
def render_history(history):
"""Render chat history with images and proper formatting"""
rendered = []
for user_msg, bot_msg, image_links in history:
user_html = f"<div class='user-msg'>{user_msg}</div>"
bot_text = str(bot_msg)
if "Lesson Plan:" in bot_text:
bot_html = f"<div class='lesson-plan'>{bot_text}</div>"
else:
bot_html = f"<div class='bot-msg'>{bot_text}</div>"
# Add images if available
if image_links:
images_html = "".join(
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
for url in image_links
)
bot_html += f"<br><br><b>๐ธ Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
rendered.append((user_html, bot_html))
return rendered
def respond(message, history, chat, student, image, lesson,
tokens, student_q, image_q, image_upload, image_url,
include_visuals, num_imgs, topic, duration, additional):
"""
1. Use actual_message (depending on mode) instead of raw `message`.
2. Convert any nonโstring Bot response (like VLMDecodedResults) to str().
3. Disable the input box during streaming, then re-enable it at the end.
"""
updated_history = list(history)
if student:
actual_message = student_q
elif image:
actual_message = image_q
elif lesson:
actual_message = f"Generate lesson plan for: {topic} ({duration} periods)"
if additional:
actual_message += f"\nAdditional: {additional}"
else:
actual_message = message
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
updated_history.append((actual_message, typing_html, []))
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
full_response = ""
images = []
try:
if chat:
for chunk in ai_system.generate_text_stream(actual_message, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
if include_visuals:
images = ai_system.fetch_images(actual_message, num_imgs)
elif student:
if ai_system.current_df is None:
full_response = "โ ๏ธ Please upload a student data file first"
else:
for chunk in ai_system.analyze_student_data(student_q, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
elif image:
if (not image_upload) and (not image_url):
full_response = "โ ๏ธ Please upload an image or enter a URL"
else:
result_obj = ai_system.analyze_image(image_upload, image_url, image_q)
full_response = str(result_obj)
elif lesson:
if not topic:
full_response = "โ ๏ธ Please enter a lesson topic"
else:
duration = int(duration) if duration else 5
for chunk in ai_system.generate_lesson_plan(topic, duration, additional, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
updated_history[-1] = (actual_message, full_response, images)
if len(updated_history) > MAX_HISTORY_TURNS:
updated_history = updated_history[-MAX_HISTORY_TURNS:]
except Exception as e:
error_msg = f"โ Error: {str(e)}"
updated_history[-1] = (actual_message, error_msg, [])
yield render_history(updated_history), gr.update(value="", interactive=True), updated_history
# Voice transcription
def transcribe_audio(audio):
return ai_system.transcribe(audio)
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
student_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
image_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
lesson_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
# File upload handler
file_upload.change(fn=load_student_file, inputs=file_upload, outputs=student_status)
# Document upload handler
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
# Submit handler
submit_btn.click(
fn=respond,
inputs=[
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
max_tokens, student_question, image_question, image_upload, image_url,
include_images, num_images,
topic_input, duration_input, additional_instructions
],
outputs=[chatbot, user_input, chat_state]
)
generate_btn.click(
fn=respond,
inputs=[
gr.Textbox(value="Generate lesson plan", visible=False),
chat_state,
chat_mode, student_mode, image_mode, lesson_mode,
max_tokens,
gr.Textbox(visible=False),
gr.Textbox(visible=False),
gr.Image(visible=False),
gr.Textbox(visible=False),
gr.Checkbox(visible=False),
gr.Slider(visible=False),
topic_input,
duration_input,
additional_instructions
],
outputs=[chatbot, user_input, chat_state]
)
if __name__ == "__main__":
demo.launch(share=True, debug=True) |