import cv2 import numpy as np import posenet.constants def valid_resolution(width, height, output_stride=16): target_width = (int(width) // output_stride) * output_stride + 1 target_height = (int(height) // output_stride) * output_stride + 1 return target_width, target_height def _process_input(source_img, scale_factor=1.0, output_stride=16): target_width, target_height = valid_resolution( source_img.shape[1] * scale_factor, source_img.shape[0] * scale_factor, output_stride=output_stride) scale = np.array([source_img.shape[0] / target_height, source_img.shape[1] / target_width]) input_img = cv2.resize(source_img, (target_width, target_height), interpolation=cv2.INTER_LINEAR) input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype(np.float32) input_img = input_img * (2.0 / 255.0) - 1.0 input_img = input_img.transpose((2, 0, 1)).reshape(1, 3, target_height, target_width) return input_img, source_img, scale def read_cap(cap, scale_factor=1.0, output_stride=16): res, img = cap.read() if not res: raise IOError("webcam failure") return _process_input(img, scale_factor, output_stride) def read_imgfile(path, scale_factor=1.0, output_stride=16): img = cv2.imread(path) return _process_input(img, scale_factor, output_stride) def draw_keypoints( img, instance_scores, keypoint_scores, keypoint_coords, min_pose_confidence=0.5, min_part_confidence=0.5): cv_keypoints = [] for ii, score in enumerate(instance_scores): if score < min_pose_confidence: continue for ks, kc in zip(keypoint_scores[ii, :], keypoint_coords[ii, :, :]): if ks < min_part_confidence: continue cv_keypoints.append(cv2.KeyPoint(kc[1], kc[0], 10. * ks)) out_img = cv2.drawKeypoints(img, cv_keypoints, outImage=np.array([])) return out_img def get_adjacent_keypoints(keypoint_scores, keypoint_coords, min_confidence=0.1): results = [] for left, right in posenet.CONNECTED_PART_INDICES: if keypoint_scores[left] < min_confidence or keypoint_scores[right] < min_confidence: continue results.append( np.array([keypoint_coords[left][::-1], keypoint_coords[right][::-1]]).astype(np.int32), ) return results def draw_skeleton( img, instance_scores, keypoint_scores, keypoint_coords, min_pose_confidence=0.5, min_part_confidence=0.5): out_img = img adjacent_keypoints = [] for ii, score in enumerate(instance_scores): if score < min_pose_confidence: continue new_keypoints = get_adjacent_keypoints( keypoint_scores[ii, :], keypoint_coords[ii, :, :], min_part_confidence) adjacent_keypoints.extend(new_keypoints) out_img = cv2.polylines(out_img, adjacent_keypoints, isClosed=False, color=(255, 255, 0)) return out_img def draw_skel_and_kp( img, instance_scores, keypoint_scores, keypoint_coords, min_pose_score=0.5, min_part_score=0.5): out_img = img adjacent_keypoints = [] cv_keypoints = [] for ii, score in enumerate(instance_scores): if score < min_pose_score: continue new_keypoints = get_adjacent_keypoints( keypoint_scores[ii, :], keypoint_coords[ii, :, :], min_part_score) adjacent_keypoints.extend(new_keypoints) for ks, kc in zip(keypoint_scores[ii, :], keypoint_coords[ii, :, :]): if ks < min_part_score: continue cv_keypoints.append(cv2.KeyPoint(kc[1], kc[0], 10. * ks)) if cv_keypoints: out_img = cv2.drawKeypoints( out_img, cv_keypoints, outImage=np.array([]), color=(255, 255, 0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) out_img = cv2.polylines(out_img, adjacent_keypoints, isClosed=False, color=(255, 255, 0)) return out_img