import os import numpy as np from PIL import Image def main(): image_paths, label_paths = init_path() hist = compute_hist(image_paths, label_paths) show_result(hist) def init_path(): list_file = './human/list/val_id.txt' file_names = [] with open(list_file, 'rb') as f: for fn in f: file_names.append(fn.strip()) image_dir = './human/features/attention/val/results/' label_dir = './human/data/labels/' image_paths = [] label_paths = [] for file_name in file_names: image_paths.append(os.path.join(image_dir, file_name + '.png')) label_paths.append(os.path.join(label_dir, file_name + '.png')) return image_paths, label_paths def fast_hist(lbl, pred, n_cls): ''' compute the miou :param lbl: label :param pred: output :param n_cls: num of class :return: ''' # print(n_cls) k = (lbl >= 0) & (lbl < n_cls) return np.bincount(n_cls * lbl[k].astype(int) + pred[k], minlength=n_cls ** 2).reshape(n_cls, n_cls) def compute_hist(images, labels,n_cls=20): hist = np.zeros((n_cls, n_cls)) for img_path, label_path in zip(images, labels): label = Image.open(label_path) label_array = np.array(label, dtype=np.int32) image = Image.open(img_path) image_array = np.array(image, dtype=np.int32) gtsz = label_array.shape imgsz = image_array.shape if not gtsz == imgsz: image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS) image_array = np.array(image, dtype=np.int32) hist += fast_hist(label_array, image_array, n_cls) return hist def show_result(hist): classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes', 'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt', 'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe', 'rightShoe'] # num of correct pixels num_cor_pix = np.diag(hist) # num of gt pixels num_gt_pix = hist.sum(1) print('=' * 50) # @evaluation 1: overall accuracy acc = num_cor_pix.sum() / hist.sum() print('>>>', 'overall accuracy', acc) print('-' * 50) # @evaluation 2: mean accuracy & per-class accuracy print('Accuracy for each class (pixel accuracy):') for i in range(20): print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i])) acc = num_cor_pix / num_gt_pix print('>>>', 'mean accuracy', np.nanmean(acc)) print('-' * 50) # @evaluation 3: mean IU & per-class IU union = num_gt_pix + hist.sum(0) - num_cor_pix for i in range(20): print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) print('>>>', 'mean IU', np.nanmean(iu)) print('-' * 50) # @evaluation 4: frequency weighted IU freq = num_gt_pix / hist.sum() print('>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum()) print('=' * 50) def get_iou(pred,lbl,n_cls): ''' need tensor cpu :param pred: :param lbl: :param n_cls: :return: ''' hist = np.zeros((n_cls,n_cls)) for i,j in zip(range(pred.size(0)),range(lbl.size(0))): pred_item = pred[i].data.numpy() lbl_item = lbl[j].data.numpy() hist += fast_hist(lbl_item, pred_item, n_cls) # num of correct pixels num_cor_pix = np.diag(hist) # num of gt pixels num_gt_pix = hist.sum(1) union = num_gt_pix + hist.sum(0) - num_cor_pix # for i in range(20): # print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) print('>>>', 'mean IU', np.nanmean(iu)) miou = np.nanmean(iu) print('-' * 50) return miou def get_iou_from_list(pred,lbl,n_cls): ''' need tensor cpu :param pred: list :param lbl: list :param n_cls: :return: ''' hist = np.zeros((n_cls,n_cls)) for i,j in zip(range(len(pred)),range(len(lbl))): pred_item = pred[i].data.numpy() lbl_item = lbl[j].data.numpy() # print(pred_item.shape,lbl_item.shape) hist += fast_hist(lbl_item, pred_item, n_cls) # num of correct pixels num_cor_pix = np.diag(hist) # num of gt pixels num_gt_pix = hist.sum(1) union = num_gt_pix + hist.sum(0) - num_cor_pix # for i in range(20): acc = num_cor_pix.sum() / hist.sum() print('>>>', 'overall accuracy', acc) print('-' * 50) # print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) print('>>>', 'mean IU', np.nanmean(iu)) miou = np.nanmean(iu) print('-' * 50) acc = num_cor_pix / num_gt_pix print('>>>', 'mean accuracy', np.nanmean(acc)) print('-' * 50) return miou if __name__ == '__main__': import torch pred = torch.autograd.Variable(torch.ones((2,1,32,32)).int())*20 pred2 = torch.autograd.Variable(torch.zeros((2,1, 32, 32)).int()) # lbl = [torch.zeros((32,32)).int() for _ in range(len(pred))] get_iou(pred,pred2,7)