from pylab import imshow import numpy as np import cv2 import torch import albumentations as albu from iglovikov_helper_functions.utils.image_utils import load_rgb, pad, unpad from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image from cloths_segmentation.pre_trained_models import create_model import warnings warnings.filterwarnings("ignore") model = create_model("Unet_2020-10-30") model.eval() image = load_rgb("TryYours-Virtual-Try-On/static/cloth_web.jpg") -0 transform = albu.Compose([albu.Normalize(p=1)], p=1) padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT) x = transform(image=padded_image)["image"] x = torch.unsqueeze(tensor_from_rgb_image(x), 0) with torch.no_grad(): prediction = model(x)[0][0] mask = (prediction > 0).cpu().numpy().astype(np.uint8) mask = unpad(mask, pads) img = np.full((1024, 768, 3), 255) seg_img = np.full((1024, 768), 0) b = cv2.imread("TryYours-Virtual-Try-On/static/cloth_web.jpg") b_img = mask * 255 # Calculate the exact dimensions that will fit into the img array # Ensure both dimensions are even to avoid mismatch exact_height = 1024 - (1024 % 2) exact_width = 768 - (768 % 2) # Resize b and b_img to these exact dimensions b = cv2.resize(b, (exact_width, exact_height)) b_img = cv2.resize(b_img, (exact_width, exact_height)) # Now, the dimensions of b and b_img should match the slice of img # You can proceed with the assignment without encountering the ValueError img[int((1024-exact_height)/2): 1024-int((1024-exact_height)/2), int((768-exact_width)/2):768-int((768-exact_width)/2)] = b seg_img[int((1024-exact_height)/2): 1024-int((1024-exact_height)/2), int((768-exact_width)/2):768-int((768-exact_width)/2)] = b_img # Save the images cv2.imwrite("TryYours-Virtual-Try-On/HR-VITON-main/test/test/cloth/00001_00.jpg", img) cv2.imwrite("TryYours-Virtual-Try-On/HR-VITON-main/test/test/cloth-mask/00001_00.jpg", seg_img)