wizzseen's picture
Upload 948 files
8a6df40 verified
raw
history blame
60.5 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from torch.nn import Parameter
from networks import deeplab_xception, gcn, deeplab_xception_synBN
class deeplab_xception_transfer_basemodel_savememory(deeplab_xception.DeepLabv3_plus):
def __init__(self, nInputChannels=3, n_classes=7, os=16, input_channels=256, hidden_layers=128, out_channels=256,
source_classes=20, transfer_graph=None):
super(deeplab_xception_transfer_basemodel_savememory, self).__init__(nInputChannels=nInputChannels, n_classes=n_classes,
os=os,)
def load_source_model(self,state_dict):
own_state = self.state_dict()
# for name inshop_cos own_state:
# print name
new_state_dict = OrderedDict()
for name, param in state_dict.items():
name = name.replace('module.', '')
if 'graph' in name and 'source' not in name and 'target' not in name and 'fc_graph' not in name \
and 'transpose_graph' not in name and 'middle' not in name:
if 'featuremap_2_graph' in name:
name = name.replace('featuremap_2_graph','source_featuremap_2_graph')
else:
name = name.replace('graph','source_graph')
new_state_dict[name] = 0
if name not in own_state:
if 'num_batch' in name:
continue
print('unexpected key "{}" in state_dict'
.format(name))
continue
# if isinstance(param, own_state):
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
try:
own_state[name].copy_(param)
except:
print('While copying the parameter named {}, whose dimensions in the model are'
' {} and whose dimensions in the checkpoint are {}, ...'.format(
name, own_state[name].size(), param.size()))
continue # i add inshop_cos 2018/02/01
own_state[name].copy_(param)
# print 'copying %s' %name
missing = set(own_state.keys()) - set(new_state_dict.keys())
if len(missing) > 0:
print('missing keys in state_dict: "{}"'.format(missing))
def get_target_parameter(self):
l = []
other = []
for name, k in self.named_parameters():
if 'target' in name or 'semantic' in name:
l.append(k)
else:
other.append(k)
return l, other
def get_semantic_parameter(self):
l = []
for name, k in self.named_parameters():
if 'semantic' in name:
l.append(k)
return l
def get_source_parameter(self):
l = []
for name, k in self.named_parameters():
if 'source' in name:
l.append(k)
return l
def top_forward(self, input, adj1_target=None, adj2_source=None,adj3_transfer=None ):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### source graph
source_graph = self.source_featuremap_2_graph(x)
source_graph1 = self.source_graph_conv1.forward(source_graph, adj=adj2_source, relu=True)
source_graph2 = self.source_graph_conv2.forward(source_graph1, adj=adj2_source, relu=True)
source_graph3 = self.source_graph_conv2.forward(source_graph2, adj=adj2_source, relu=True)
### target source
graph = self.target_featuremap_2_graph(x)
# graph combine
# print(graph.size(),source_2_target_graph.size())
# graph = self.fc_graph.forward(graph,relu=True)
# print(graph.size())
graph = self.target_graph_conv1.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv2.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv3.forward(graph, adj=adj1_target, relu=True)
def forward(self, input,adj1_target=None, adj2_source=None,adj3_transfer=None ):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### add graph
# target graph
# print('x size',x.size(),adj1.size())
graph = self.target_featuremap_2_graph(x)
# graph combine
# print(graph.size(),source_2_target_graph.size())
# graph = self.fc_graph.forward(graph,relu=True)
# print(graph.size())
graph = self.target_graph_conv1.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv2.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv3.forward(graph, adj=adj1_target, relu=True)
# print(graph.size(),x.size())
# graph = self.gcn_encode.forward(graph,relu=True)
# graph = self.graph_conv2.forward(graph,adj=adj2,relu=True)
# graph = self.gcn_decode.forward(graph,relu=True)
graph = self.target_graph_2_fea.forward(graph, x)
x = self.target_skip_conv(x)
x = x + graph
###
x = self.semantic(x)
x = F.upsample(x, size=input.size()[2:], mode='bilinear', align_corners=True)
return x
class deeplab_xception_transfer_basemodel_savememory_synbn(deeplab_xception_synBN.DeepLabv3_plus):
def __init__(self, nInputChannels=3, n_classes=7, os=16, input_channels=256, hidden_layers=128, out_channels=256,
source_classes=20, transfer_graph=None):
super(deeplab_xception_transfer_basemodel_savememory_synbn, self).__init__(nInputChannels=nInputChannels, n_classes=n_classes,
os=os,)
def load_source_model(self,state_dict):
own_state = self.state_dict()
# for name inshop_cos own_state:
# print name
new_state_dict = OrderedDict()
for name, param in state_dict.items():
name = name.replace('module.', '')
if 'graph' in name and 'source' not in name and 'target' not in name and 'fc_graph' not in name \
and 'transpose_graph' not in name and 'middle' not in name:
if 'featuremap_2_graph' in name:
name = name.replace('featuremap_2_graph','source_featuremap_2_graph')
else:
name = name.replace('graph','source_graph')
new_state_dict[name] = 0
if name not in own_state:
if 'num_batch' in name:
continue
print('unexpected key "{}" in state_dict'
.format(name))
continue
# if isinstance(param, own_state):
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
try:
own_state[name].copy_(param)
except:
print('While copying the parameter named {}, whose dimensions in the model are'
' {} and whose dimensions in the checkpoint are {}, ...'.format(
name, own_state[name].size(), param.size()))
continue # i add inshop_cos 2018/02/01
own_state[name].copy_(param)
# print 'copying %s' %name
missing = set(own_state.keys()) - set(new_state_dict.keys())
if len(missing) > 0:
print('missing keys in state_dict: "{}"'.format(missing))
def get_target_parameter(self):
l = []
other = []
for name, k in self.named_parameters():
if 'target' in name or 'semantic' in name:
l.append(k)
else:
other.append(k)
return l, other
def get_semantic_parameter(self):
l = []
for name, k in self.named_parameters():
if 'semantic' in name:
l.append(k)
return l
def get_source_parameter(self):
l = []
for name, k in self.named_parameters():
if 'source' in name:
l.append(k)
return l
def top_forward(self, input, adj1_target=None, adj2_source=None,adj3_transfer=None ):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### source graph
source_graph = self.source_featuremap_2_graph(x)
source_graph1 = self.source_graph_conv1.forward(source_graph, adj=adj2_source, relu=True)
source_graph2 = self.source_graph_conv2.forward(source_graph1, adj=adj2_source, relu=True)
source_graph3 = self.source_graph_conv2.forward(source_graph2, adj=adj2_source, relu=True)
### target source
graph = self.target_featuremap_2_graph(x)
# graph combine
# print(graph.size(),source_2_target_graph.size())
# graph = self.fc_graph.forward(graph,relu=True)
# print(graph.size())
graph = self.target_graph_conv1.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv2.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv3.forward(graph, adj=adj1_target, relu=True)
def forward(self, input,adj1_target=None, adj2_source=None,adj3_transfer=None ):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### add graph
# target graph
# print('x size',x.size(),adj1.size())
graph = self.target_featuremap_2_graph(x)
# graph combine
# print(graph.size(),source_2_target_graph.size())
# graph = self.fc_graph.forward(graph,relu=True)
# print(graph.size())
graph = self.target_graph_conv1.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv2.forward(graph, adj=adj1_target, relu=True)
graph = self.target_graph_conv3.forward(graph, adj=adj1_target, relu=True)
# print(graph.size(),x.size())
# graph = self.gcn_encode.forward(graph,relu=True)
# graph = self.graph_conv2.forward(graph,adj=adj2,relu=True)
# graph = self.gcn_decode.forward(graph,relu=True)
graph = self.target_graph_2_fea.forward(graph, x)
x = self.target_skip_conv(x)
x = x + graph
###
x = self.semantic(x)
x = F.upsample(x, size=input.size()[2:], mode='bilinear', align_corners=True)
return x
class deeplab_xception_end2end_3d(deeplab_xception_transfer_basemodel_savememory):
def __init__(self, nInputChannels=3, n_classes=20, os=16, input_channels=256, hidden_layers=128, out_channels=256,
source_classes=7, middle_classes=18, transfer_graph=None):
super(deeplab_xception_end2end_3d, self).__init__(nInputChannels=nInputChannels,
n_classes=n_classes,
os=os, )
### source graph
self.source_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=source_classes)
self.source_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=source_classes
)
self.source_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
self.source_semantic = nn.Conv2d(out_channels,source_classes,1)
self.middle_semantic = nn.Conv2d(out_channels, middle_classes, 1)
### target graph 1
self.target_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=n_classes)
self.target_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=n_classes
)
self.target_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
### middle
self.middle_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=middle_classes)
self.middle_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=n_classes
)
self.middle_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
### multi transpose
self.transpose_graph_source2target = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=source_classes, end_nodes=n_classes)
self.transpose_graph_target2source = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=n_classes, end_nodes=source_classes)
self.transpose_graph_middle2source = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=middle_classes, end_nodes=source_classes)
self.transpose_graph_middle2target = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=middle_classes, end_nodes=source_classes)
self.transpose_graph_source2middle = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=source_classes, end_nodes=middle_classes)
self.transpose_graph_target2middle = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=n_classes, end_nodes=middle_classes)
self.fc_graph_source = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
self.fc_graph_target = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
self.fc_graph_middle = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
def freeze_totally_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
def freeze_backbone_bn(self):
for m in self.xception_features.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
def top_forward(self, input, adj1_target=None, adj2_source=None, adj3_transfer_s2t=None, adj3_transfer_t2s=None,
adj4_middle=None,adj5_transfer_s2m=None,adj6_transfer_t2m=None,adj5_transfer_m2s=None,adj6_transfer_m2t=None,):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### source graph
source_graph = self.source_featuremap_2_graph(x)
### target source
target_graph = self.target_featuremap_2_graph(x)
### middle source
middle_graph = self.middle_featuremap_2_graph(x)
##### end2end multi task
### first task
# print(source_graph.size(),target_graph.size())
source_graph1 = self.source_graph_conv1.forward(source_graph, adj=adj2_source, relu=True)
target_graph1 = self.target_graph_conv1.forward(target_graph, adj=adj1_target, relu=True)
middle_graph1 = self.target_graph_conv1.forward(middle_graph, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph1_v5 = self.transpose_graph_source2target.forward(source_graph1, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph1_v5 = self.transpose_graph_source2middle.forward(source_graph1,adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph1_v5 = self.transpose_graph_target2source.forward(target_graph1, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph1_v5 = self.transpose_graph_target2middle.forward(target_graph1, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph1_v5 = self.transpose_graph_middle2source.forward(middle_graph1, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph1_v5 = self.transpose_graph_middle2target.forward(middle_graph1, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph1 = self.similarity_trans(source_graph1, target_graph1)
source_2_middle_graph1 = self.similarity_trans(source_graph1, middle_graph1)
# target 2 source middle
target_2_source_graph1 = self.similarity_trans(target_graph1, source_graph1)
target_2_middle_graph1 = self.similarity_trans(target_graph1, middle_graph1)
# middle 2 source target
middle_2_source_graph1 = self.similarity_trans(middle_graph1, source_graph1)
middle_2_target_graph1 = self.similarity_trans(middle_graph1, target_graph1)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph1 = torch.cat(
(source_graph1, target_2_source_graph1, target_2_source_graph1_v5,
middle_2_source_graph1, middle_2_source_graph1_v5), dim=-1)
source_graph1 = self.fc_graph_source.forward(source_graph1, relu=True)
# target
target_graph1 = torch.cat(
(target_graph1, source_2_target_graph1, source_2_target_graph1_v5,
middle_2_target_graph1, middle_2_target_graph1_v5), dim=-1)
target_graph1 = self.fc_graph_target.forward(target_graph1, relu=True)
# middle
middle_graph1 = torch.cat((middle_graph1, source_2_middle_graph1, source_2_middle_graph1_v5,
target_2_middle_graph1, target_2_middle_graph1_v5), dim=-1)
middle_graph1 = self.fc_graph_middle.forward(middle_graph1, relu=True)
### seconde task
source_graph2 = self.source_graph_conv1.forward(source_graph1, adj=adj2_source, relu=True)
target_graph2 = self.target_graph_conv1.forward(target_graph1, adj=adj1_target, relu=True)
middle_graph2 = self.target_graph_conv1.forward(middle_graph1, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph2_v5 = self.transpose_graph_source2target.forward(source_graph2, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph2_v5 = self.transpose_graph_source2middle.forward(source_graph2, adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph2_v5 = self.transpose_graph_target2source.forward(target_graph2, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph2_v5 = self.transpose_graph_target2middle.forward(target_graph2, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph2_v5 = self.transpose_graph_middle2source.forward(middle_graph2, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph2_v5 = self.transpose_graph_middle2target.forward(middle_graph2, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph2 = self.similarity_trans(source_graph2, target_graph2)
source_2_middle_graph2 = self.similarity_trans(source_graph2, middle_graph2)
# target 2 source middle
target_2_source_graph2 = self.similarity_trans(target_graph2, source_graph2)
target_2_middle_graph2 = self.similarity_trans(target_graph2, middle_graph2)
# middle 2 source target
middle_2_source_graph2 = self.similarity_trans(middle_graph2, source_graph2)
middle_2_target_graph2 = self.similarity_trans(middle_graph2, target_graph2)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph2 = torch.cat(
(source_graph2, target_2_source_graph2, target_2_source_graph2_v5,
middle_2_source_graph2, middle_2_source_graph2_v5), dim=-1)
source_graph2 = self.fc_graph_source.forward(source_graph2, relu=True)
# target
target_graph2 = torch.cat(
(target_graph2, source_2_target_graph2, source_2_target_graph2_v5,
middle_2_target_graph2, middle_2_target_graph2_v5), dim=-1)
target_graph2 = self.fc_graph_target.forward(target_graph2, relu=True)
# middle
middle_graph2 = torch.cat((middle_graph2, source_2_middle_graph2, source_2_middle_graph2_v5,
target_2_middle_graph2, target_2_middle_graph2_v5), dim=-1)
middle_graph2 = self.fc_graph_middle.forward(middle_graph2, relu=True)
### third task
source_graph3 = self.source_graph_conv1.forward(source_graph2, adj=adj2_source, relu=True)
target_graph3 = self.target_graph_conv1.forward(target_graph2, adj=adj1_target, relu=True)
middle_graph3 = self.target_graph_conv1.forward(middle_graph2, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph3_v5 = self.transpose_graph_source2target.forward(source_graph3, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph3_v5 = self.transpose_graph_source2middle.forward(source_graph3, adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph3_v5 = self.transpose_graph_target2source.forward(target_graph3, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph3_v5 = self.transpose_graph_target2middle.forward(target_graph3, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph3_v5 = self.transpose_graph_middle2source.forward(middle_graph3, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph3_v5 = self.transpose_graph_middle2target.forward(middle_graph3, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph3 = self.similarity_trans(source_graph3, target_graph3)
source_2_middle_graph3 = self.similarity_trans(source_graph3, middle_graph3)
# target 2 source middle
target_2_source_graph3 = self.similarity_trans(target_graph3, source_graph3)
target_2_middle_graph3 = self.similarity_trans(target_graph3, middle_graph3)
# middle 2 source target
middle_2_source_graph3 = self.similarity_trans(middle_graph3, source_graph3)
middle_2_target_graph3 = self.similarity_trans(middle_graph3, target_graph3)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph3 = torch.cat(
(source_graph3, target_2_source_graph3, target_2_source_graph3_v5,
middle_2_source_graph3, middle_2_source_graph3_v5), dim=-1)
source_graph3 = self.fc_graph_source.forward(source_graph3, relu=True)
# target
target_graph3 = torch.cat(
(target_graph3, source_2_target_graph3, source_2_target_graph3_v5,
middle_2_target_graph3, middle_2_target_graph3_v5), dim=-1)
target_graph3 = self.fc_graph_target.forward(target_graph3, relu=True)
# middle
middle_graph3 = torch.cat((middle_graph3, source_2_middle_graph3, source_2_middle_graph3_v5,
target_2_middle_graph3, target_2_middle_graph3_v5), dim=-1)
middle_graph3 = self.fc_graph_middle.forward(middle_graph3, relu=True)
return source_graph3, target_graph3, middle_graph3, x
def similarity_trans(self,source,target):
sim = torch.matmul(F.normalize(target, p=2, dim=-1), F.normalize(source, p=2, dim=-1).transpose(-1, -2))
sim = F.softmax(sim, dim=-1)
return torch.matmul(sim, source)
def bottom_forward_source(self, input, source_graph):
# print('input size')
# print(input.size())
# print(source_graph.size())
graph = self.source_graph_2_fea.forward(source_graph, input)
x = self.source_skip_conv(input)
x = x + graph
x = self.source_semantic(x)
return x
def bottom_forward_target(self, input, target_graph):
graph = self.target_graph_2_fea.forward(target_graph, input)
x = self.target_skip_conv(input)
x = x + graph
x = self.semantic(x)
return x
def bottom_forward_middle(self, input, target_graph):
graph = self.middle_graph_2_fea.forward(target_graph, input)
x = self.middle_skip_conv(input)
x = x + graph
x = self.middle_semantic(x)
return x
def forward(self, input_source, input_target=None, input_middle=None, adj1_target=None, adj2_source=None,
adj3_transfer_s2t=None, adj3_transfer_t2s=None, adj4_middle=None,adj5_transfer_s2m=None,
adj6_transfer_t2m=None,adj5_transfer_m2s=None,adj6_transfer_m2t=None,):
if input_source is None and input_target is not None and input_middle is None:
# target
target_batch = input_target.size(0)
input = input_target
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target, adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
# source_x = self.bottom_forward_source(source_x, source_graph)
target_x = self.bottom_forward_target(x, target_graph)
target_x = F.upsample(target_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return None, target_x, None
if input_source is not None and input_target is None and input_middle is None:
# source
source_batch = input_source.size(0)
source_list = range(source_batch)
input = input_source
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target,
adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
source_x = self.bottom_forward_source(x, source_graph)
source_x = F.upsample(source_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return source_x, None, None
if input_middle is not None and input_source is None and input_target is None:
# middle
input = input_middle
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target,
adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
middle_x = self.bottom_forward_middle(x, source_graph)
middle_x = F.upsample(middle_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return None, None, middle_x
class deeplab_xception_end2end_3d_synbn(deeplab_xception_transfer_basemodel_savememory_synbn):
def __init__(self, nInputChannels=3, n_classes=20, os=16, input_channels=256, hidden_layers=128, out_channels=256,
source_classes=7, middle_classes=18, transfer_graph=None):
super(deeplab_xception_end2end_3d_synbn, self).__init__(nInputChannels=nInputChannels,
n_classes=n_classes,
os=os, )
### source graph
self.source_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=source_classes)
self.source_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.source_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=source_classes
)
self.source_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
self.source_semantic = nn.Conv2d(out_channels,source_classes,1)
self.middle_semantic = nn.Conv2d(out_channels, middle_classes, 1)
### target graph 1
self.target_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=n_classes)
self.target_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.target_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=n_classes
)
self.target_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
### middle
self.middle_featuremap_2_graph = gcn.Featuremaps_to_Graph(input_channels=input_channels,
hidden_layers=hidden_layers,
nodes=middle_classes)
self.middle_graph_conv1 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_conv2 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_conv3 = gcn.GraphConvolution(hidden_layers, hidden_layers)
self.middle_graph_2_fea = gcn.Graph_to_Featuremaps_savemem(input_channels=input_channels,
output_channels=out_channels,
hidden_layers=hidden_layers, nodes=n_classes
)
self.middle_skip_conv = nn.Sequential(*[nn.Conv2d(input_channels, input_channels, kernel_size=1),
nn.ReLU(True)])
### multi transpose
self.transpose_graph_source2target = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=source_classes, end_nodes=n_classes)
self.transpose_graph_target2source = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=n_classes, end_nodes=source_classes)
self.transpose_graph_middle2source = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=middle_classes, end_nodes=source_classes)
self.transpose_graph_middle2target = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=middle_classes, end_nodes=source_classes)
self.transpose_graph_source2middle = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=source_classes, end_nodes=middle_classes)
self.transpose_graph_target2middle = gcn.Graph_trans(in_features=hidden_layers, out_features=hidden_layers,
adj=transfer_graph,
begin_nodes=n_classes, end_nodes=middle_classes)
self.fc_graph_source = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
self.fc_graph_target = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
self.fc_graph_middle = gcn.GraphConvolution(hidden_layers * 5, hidden_layers)
def top_forward(self, input, adj1_target=None, adj2_source=None, adj3_transfer_s2t=None, adj3_transfer_t2s=None,
adj4_middle=None,adj5_transfer_s2m=None,adj6_transfer_t2m=None,adj5_transfer_m2s=None,adj6_transfer_m2t=None,):
x, low_level_features = self.xception_features(input)
# print(x.size())
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.concat_projection_conv1(x)
x = self.concat_projection_bn1(x)
x = self.relu(x)
# print(x.size())
x = F.upsample(x, size=low_level_features.size()[2:], mode='bilinear', align_corners=True)
low_level_features = self.feature_projection_conv1(low_level_features)
low_level_features = self.feature_projection_bn1(low_level_features)
low_level_features = self.relu(low_level_features)
# print(low_level_features.size())
# print(x.size())
x = torch.cat((x, low_level_features), dim=1)
x = self.decoder(x)
### source graph
source_graph = self.source_featuremap_2_graph(x)
### target source
target_graph = self.target_featuremap_2_graph(x)
### middle source
middle_graph = self.middle_featuremap_2_graph(x)
##### end2end multi task
### first task
# print(source_graph.size(),target_graph.size())
source_graph1 = self.source_graph_conv1.forward(source_graph, adj=adj2_source, relu=True)
target_graph1 = self.target_graph_conv1.forward(target_graph, adj=adj1_target, relu=True)
middle_graph1 = self.target_graph_conv1.forward(middle_graph, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph1_v5 = self.transpose_graph_source2target.forward(source_graph1, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph1_v5 = self.transpose_graph_source2middle.forward(source_graph1,adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph1_v5 = self.transpose_graph_target2source.forward(target_graph1, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph1_v5 = self.transpose_graph_target2middle.forward(target_graph1, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph1_v5 = self.transpose_graph_middle2source.forward(middle_graph1, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph1_v5 = self.transpose_graph_middle2target.forward(middle_graph1, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph1 = self.similarity_trans(source_graph1, target_graph1)
source_2_middle_graph1 = self.similarity_trans(source_graph1, middle_graph1)
# target 2 source middle
target_2_source_graph1 = self.similarity_trans(target_graph1, source_graph1)
target_2_middle_graph1 = self.similarity_trans(target_graph1, middle_graph1)
# middle 2 source target
middle_2_source_graph1 = self.similarity_trans(middle_graph1, source_graph1)
middle_2_target_graph1 = self.similarity_trans(middle_graph1, target_graph1)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph1 = torch.cat(
(source_graph1, target_2_source_graph1, target_2_source_graph1_v5,
middle_2_source_graph1, middle_2_source_graph1_v5), dim=-1)
source_graph1 = self.fc_graph_source.forward(source_graph1, relu=True)
# target
target_graph1 = torch.cat(
(target_graph1, source_2_target_graph1, source_2_target_graph1_v5,
middle_2_target_graph1, middle_2_target_graph1_v5), dim=-1)
target_graph1 = self.fc_graph_target.forward(target_graph1, relu=True)
# middle
middle_graph1 = torch.cat((middle_graph1, source_2_middle_graph1, source_2_middle_graph1_v5,
target_2_middle_graph1, target_2_middle_graph1_v5), dim=-1)
middle_graph1 = self.fc_graph_middle.forward(middle_graph1, relu=True)
### seconde task
source_graph2 = self.source_graph_conv1.forward(source_graph1, adj=adj2_source, relu=True)
target_graph2 = self.target_graph_conv1.forward(target_graph1, adj=adj1_target, relu=True)
middle_graph2 = self.target_graph_conv1.forward(middle_graph1, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph2_v5 = self.transpose_graph_source2target.forward(source_graph2, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph2_v5 = self.transpose_graph_source2middle.forward(source_graph2, adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph2_v5 = self.transpose_graph_target2source.forward(target_graph2, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph2_v5 = self.transpose_graph_target2middle.forward(target_graph2, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph2_v5 = self.transpose_graph_middle2source.forward(middle_graph2, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph2_v5 = self.transpose_graph_middle2target.forward(middle_graph2, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph2 = self.similarity_trans(source_graph2, target_graph2)
source_2_middle_graph2 = self.similarity_trans(source_graph2, middle_graph2)
# target 2 source middle
target_2_source_graph2 = self.similarity_trans(target_graph2, source_graph2)
target_2_middle_graph2 = self.similarity_trans(target_graph2, middle_graph2)
# middle 2 source target
middle_2_source_graph2 = self.similarity_trans(middle_graph2, source_graph2)
middle_2_target_graph2 = self.similarity_trans(middle_graph2, target_graph2)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph2 = torch.cat(
(source_graph2, target_2_source_graph2, target_2_source_graph2_v5,
middle_2_source_graph2, middle_2_source_graph2_v5), dim=-1)
source_graph2 = self.fc_graph_source.forward(source_graph2, relu=True)
# target
target_graph2 = torch.cat(
(target_graph2, source_2_target_graph2, source_2_target_graph2_v5,
middle_2_target_graph2, middle_2_target_graph2_v5), dim=-1)
target_graph2 = self.fc_graph_target.forward(target_graph2, relu=True)
# middle
middle_graph2 = torch.cat((middle_graph2, source_2_middle_graph2, source_2_middle_graph2_v5,
target_2_middle_graph2, target_2_middle_graph2_v5), dim=-1)
middle_graph2 = self.fc_graph_middle.forward(middle_graph2, relu=True)
### third task
source_graph3 = self.source_graph_conv1.forward(source_graph2, adj=adj2_source, relu=True)
target_graph3 = self.target_graph_conv1.forward(target_graph2, adj=adj1_target, relu=True)
middle_graph3 = self.target_graph_conv1.forward(middle_graph2, adj=adj4_middle, relu=True)
# source 2 target & middle
source_2_target_graph3_v5 = self.transpose_graph_source2target.forward(source_graph3, adj=adj3_transfer_s2t,
relu=True)
source_2_middle_graph3_v5 = self.transpose_graph_source2middle.forward(source_graph3, adj=adj5_transfer_s2m,
relu=True)
# target 2 source & middle
target_2_source_graph3_v5 = self.transpose_graph_target2source.forward(target_graph3, adj=adj3_transfer_t2s,
relu=True)
target_2_middle_graph3_v5 = self.transpose_graph_target2middle.forward(target_graph3, adj=adj6_transfer_t2m,
relu=True)
# middle 2 source & target
middle_2_source_graph3_v5 = self.transpose_graph_middle2source.forward(middle_graph3, adj=adj5_transfer_m2s,
relu=True)
middle_2_target_graph3_v5 = self.transpose_graph_middle2target.forward(middle_graph3, adj=adj6_transfer_m2t,
relu=True)
# source 2 middle target
source_2_target_graph3 = self.similarity_trans(source_graph3, target_graph3)
source_2_middle_graph3 = self.similarity_trans(source_graph3, middle_graph3)
# target 2 source middle
target_2_source_graph3 = self.similarity_trans(target_graph3, source_graph3)
target_2_middle_graph3 = self.similarity_trans(target_graph3, middle_graph3)
# middle 2 source target
middle_2_source_graph3 = self.similarity_trans(middle_graph3, source_graph3)
middle_2_target_graph3 = self.similarity_trans(middle_graph3, target_graph3)
## concat
# print(source_graph1.size(), target_2_source_graph1.size(), )
source_graph3 = torch.cat(
(source_graph3, target_2_source_graph3, target_2_source_graph3_v5,
middle_2_source_graph3, middle_2_source_graph3_v5), dim=-1)
source_graph3 = self.fc_graph_source.forward(source_graph3, relu=True)
# target
target_graph3 = torch.cat(
(target_graph3, source_2_target_graph3, source_2_target_graph3_v5,
middle_2_target_graph3, middle_2_target_graph3_v5), dim=-1)
target_graph3 = self.fc_graph_target.forward(target_graph3, relu=True)
# middle
middle_graph3 = torch.cat((middle_graph3, source_2_middle_graph3, source_2_middle_graph3_v5,
target_2_middle_graph3, target_2_middle_graph3_v5), dim=-1)
middle_graph3 = self.fc_graph_middle.forward(middle_graph3, relu=True)
return source_graph3, target_graph3, middle_graph3, x
def similarity_trans(self,source,target):
sim = torch.matmul(F.normalize(target, p=2, dim=-1), F.normalize(source, p=2, dim=-1).transpose(-1, -2))
sim = F.softmax(sim, dim=-1)
return torch.matmul(sim, source)
def bottom_forward_source(self, input, source_graph):
# print('input size')
# print(input.size())
# print(source_graph.size())
graph = self.source_graph_2_fea.forward(source_graph, input)
x = self.source_skip_conv(input)
x = x + graph
x = self.source_semantic(x)
return x
def bottom_forward_target(self, input, target_graph):
graph = self.target_graph_2_fea.forward(target_graph, input)
x = self.target_skip_conv(input)
x = x + graph
x = self.semantic(x)
return x
def bottom_forward_middle(self, input, target_graph):
graph = self.middle_graph_2_fea.forward(target_graph, input)
x = self.middle_skip_conv(input)
x = x + graph
x = self.middle_semantic(x)
return x
def forward(self, input_source, input_target=None, input_middle=None, adj1_target=None, adj2_source=None,
adj3_transfer_s2t=None, adj3_transfer_t2s=None, adj4_middle=None,adj5_transfer_s2m=None,
adj6_transfer_t2m=None,adj5_transfer_m2s=None,adj6_transfer_m2t=None,):
if input_source is None and input_target is not None and input_middle is None:
# target
target_batch = input_target.size(0)
input = input_target
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target, adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
# source_x = self.bottom_forward_source(source_x, source_graph)
target_x = self.bottom_forward_target(x, target_graph)
target_x = F.upsample(target_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return None, target_x, None
if input_source is not None and input_target is None and input_middle is None:
# source
source_batch = input_source.size(0)
source_list = range(source_batch)
input = input_source
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target,
adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
source_x = self.bottom_forward_source(x, source_graph)
source_x = F.upsample(source_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return source_x, None, None
if input_middle is not None and input_source is None and input_target is None:
# middle
input = input_middle
source_graph, target_graph, middle_graph, x = self.top_forward(input, adj1_target=adj1_target,
adj2_source=adj2_source,
adj3_transfer_s2t=adj3_transfer_s2t,
adj3_transfer_t2s=adj3_transfer_t2s,
adj4_middle=adj4_middle,
adj5_transfer_s2m=adj5_transfer_s2m,
adj6_transfer_t2m=adj6_transfer_t2m,
adj5_transfer_m2s=adj5_transfer_m2s,
adj6_transfer_m2t=adj6_transfer_m2t)
middle_x = self.bottom_forward_middle(x, source_graph)
middle_x = F.upsample(middle_x, size=input.size()[2:], mode='bilinear', align_corners=True)
return None, None, middle_x
if __name__ == '__main__':
net = deeplab_xception_end2end_3d()
net.freeze_totally_bn()
img1 = torch.rand((1,3,128,128))
img2 = torch.rand((1, 3, 128, 128))
a1 = torch.ones((1,1,7,20))
a2 = torch.ones((1,1,20,7))
net.eval()
net.forward(img1,img2,adj3_transfer_t2s=a2,adj3_transfer_s2t=a1)