Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| import os | |
| from typing import Any, Dict, Iterable, List, Optional | |
| from fvcore.common.timer import Timer | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.data.datasets.lvis import get_lvis_instances_meta | |
| from detectron2.structures import BoxMode | |
| from detectron2.utils.file_io import PathManager | |
| from ..utils import maybe_prepend_base_path | |
| from .coco import ( | |
| DENSEPOSE_ALL_POSSIBLE_KEYS, | |
| DENSEPOSE_METADATA_URL_PREFIX, | |
| CocoDatasetInfo, | |
| get_metadata, | |
| ) | |
| DATASETS = [ | |
| CocoDatasetInfo( | |
| name="densepose_lvis_v1_ds1_train_v1", | |
| images_root="coco_", | |
| annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json", | |
| ), | |
| CocoDatasetInfo( | |
| name="densepose_lvis_v1_ds1_val_v1", | |
| images_root="coco_", | |
| annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json", | |
| ), | |
| CocoDatasetInfo( | |
| name="densepose_lvis_v1_ds2_train_v1", | |
| images_root="coco_", | |
| annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json", | |
| ), | |
| CocoDatasetInfo( | |
| name="densepose_lvis_v1_ds2_val_v1", | |
| images_root="coco_", | |
| annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json", | |
| ), | |
| CocoDatasetInfo( | |
| name="densepose_lvis_v1_ds1_val_animals_100", | |
| images_root="coco_", | |
| annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json", | |
| ), | |
| ] | |
| def _load_lvis_annotations(json_file: str): | |
| """ | |
| Load COCO annotations from a JSON file | |
| Args: | |
| json_file: str | |
| Path to the file to load annotations from | |
| Returns: | |
| Instance of `pycocotools.coco.COCO` that provides access to annotations | |
| data | |
| """ | |
| from lvis import LVIS | |
| json_file = PathManager.get_local_path(json_file) | |
| logger = logging.getLogger(__name__) | |
| timer = Timer() | |
| lvis_api = LVIS(json_file) | |
| if timer.seconds() > 1: | |
| logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) | |
| return lvis_api | |
| def _add_categories_metadata(dataset_name: str) -> None: | |
| metadict = get_lvis_instances_meta(dataset_name) | |
| categories = metadict["thing_classes"] | |
| metadata = MetadataCatalog.get(dataset_name) | |
| metadata.categories = {i + 1: categories[i] for i in range(len(categories))} | |
| logger = logging.getLogger(__name__) | |
| logger.info(f"Dataset {dataset_name} has {len(categories)} categories") | |
| def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None: | |
| ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
| assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( | |
| json_file | |
| ) | |
| def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
| if "bbox" not in ann_dict: | |
| return | |
| obj["bbox"] = ann_dict["bbox"] | |
| obj["bbox_mode"] = BoxMode.XYWH_ABS | |
| def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
| if "segmentation" not in ann_dict: | |
| return | |
| segm = ann_dict["segmentation"] | |
| if not isinstance(segm, dict): | |
| # filter out invalid polygons (< 3 points) | |
| segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] | |
| if len(segm) == 0: | |
| return | |
| obj["segmentation"] = segm | |
| def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
| if "keypoints" not in ann_dict: | |
| return | |
| keypts = ann_dict["keypoints"] # list[int] | |
| for idx, v in enumerate(keypts): | |
| if idx % 3 != 2: | |
| # COCO's segmentation coordinates are floating points in [0, H or W], | |
| # but keypoint coordinates are integers in [0, H-1 or W-1] | |
| # Therefore we assume the coordinates are "pixel indices" and | |
| # add 0.5 to convert to floating point coordinates. | |
| keypts[idx] = v + 0.5 | |
| obj["keypoints"] = keypts | |
| def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | |
| for key in DENSEPOSE_ALL_POSSIBLE_KEYS: | |
| if key in ann_dict: | |
| obj[key] = ann_dict[key] | |
| def _combine_images_with_annotations( | |
| dataset_name: str, | |
| image_root: str, | |
| img_datas: Iterable[Dict[str, Any]], | |
| ann_datas: Iterable[Iterable[Dict[str, Any]]], | |
| ): | |
| dataset_dicts = [] | |
| def get_file_name(img_root, img_dict): | |
| # Determine the path including the split folder ("train2017", "val2017", "test2017") from | |
| # the coco_url field. Example: | |
| # 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg' | |
| split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | |
| return os.path.join(img_root + split_folder, file_name) | |
| for img_dict, ann_dicts in zip(img_datas, ann_datas): | |
| record = {} | |
| record["file_name"] = get_file_name(image_root, img_dict) | |
| record["height"] = img_dict["height"] | |
| record["width"] = img_dict["width"] | |
| record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) | |
| record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | |
| record["image_id"] = img_dict["id"] | |
| record["dataset"] = dataset_name | |
| objs = [] | |
| for ann_dict in ann_dicts: | |
| assert ann_dict["image_id"] == record["image_id"] | |
| obj = {} | |
| _maybe_add_bbox(obj, ann_dict) | |
| obj["iscrowd"] = ann_dict.get("iscrowd", 0) | |
| obj["category_id"] = ann_dict["category_id"] | |
| _maybe_add_segm(obj, ann_dict) | |
| _maybe_add_keypoints(obj, ann_dict) | |
| _maybe_add_densepose(obj, ann_dict) | |
| objs.append(obj) | |
| record["annotations"] = objs | |
| dataset_dicts.append(record) | |
| return dataset_dicts | |
| def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str): | |
| """ | |
| Loads a JSON file with annotations in LVIS instances format. | |
| Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata | |
| in a more flexible way. Postpones category mapping to a later stage to be | |
| able to combine several datasets with different (but coherent) sets of | |
| categories. | |
| Args: | |
| annotations_json_file: str | |
| Path to the JSON file with annotations in COCO instances format. | |
| image_root: str | |
| directory that contains all the images | |
| dataset_name: str | |
| the name that identifies a dataset, e.g. "densepose_coco_2014_train" | |
| extra_annotation_keys: Optional[List[str]] | |
| If provided, these keys are used to extract additional data from | |
| the annotations. | |
| """ | |
| lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file)) | |
| _add_categories_metadata(dataset_name) | |
| # sort indices for reproducible results | |
| img_ids = sorted(lvis_api.imgs.keys()) | |
| # imgs is a list of dicts, each looks something like: | |
| # {'license': 4, | |
| # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
| # 'file_name': 'COCO_val2014_000000001268.jpg', | |
| # 'height': 427, | |
| # 'width': 640, | |
| # 'date_captured': '2013-11-17 05:57:24', | |
| # 'id': 1268} | |
| imgs = lvis_api.load_imgs(img_ids) | |
| logger = logging.getLogger(__name__) | |
| logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file)) | |
| # anns is a list[list[dict]], where each dict is an annotation | |
| # record for an object. The inner list enumerates the objects in an image | |
| # and the outer list enumerates over images. | |
| anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
| _verify_annotations_have_unique_ids(annotations_json_file, anns) | |
| dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) | |
| return dataset_records | |
| def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None: | |
| """ | |
| Registers provided LVIS DensePose dataset | |
| Args: | |
| dataset_data: CocoDatasetInfo | |
| Dataset data | |
| datasets_root: Optional[str] | |
| Datasets root folder (default: None) | |
| """ | |
| annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) | |
| images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root) | |
| def load_annotations(): | |
| return load_lvis_json( | |
| annotations_json_file=annotations_fpath, | |
| image_root=images_root, | |
| dataset_name=dataset_data.name, | |
| ) | |
| DatasetCatalog.register(dataset_data.name, load_annotations) | |
| MetadataCatalog.get(dataset_data.name).set( | |
| json_file=annotations_fpath, | |
| image_root=images_root, | |
| evaluator_type="lvis", | |
| **get_metadata(DENSEPOSE_METADATA_URL_PREFIX), | |
| ) | |
| def register_datasets( | |
| datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None | |
| ) -> None: | |
| """ | |
| Registers provided LVIS DensePose datasets | |
| Args: | |
| datasets_data: Iterable[CocoDatasetInfo] | |
| An iterable of dataset datas | |
| datasets_root: Optional[str] | |
| Datasets root folder (default: None) | |
| """ | |
| for dataset_data in datasets_data: | |
| register_dataset(dataset_data, datasets_root) | |