Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| from transformers import AutoModelForCausalLM as m, AutoTokenizer as t | |
| mod=m.from_pretrained("peterpeter8585/sungyoonaimodel2") | |
| tok=t.from_pretrained("peterpeter8585/sungyoonaimodel2", trust_remote_code=True) | |
| mod.eval() | |
| import requests | |
| from bs4 import BeautifulSoup | |
| import urllib | |
| import random | |
| import gradio as gr | |
| chatbot = gr.Chatbot( | |
| label="OpenGPT-4o-Chatty", | |
| avatar_images=["user.png", "OpenAI_logo.png"], | |
| show_copy_button=True, | |
| likeable=True, | |
| layout="panel" | |
| ) | |
| # List of user agents to choose from for requests | |
| _useragent_list = [ | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' | |
| ] | |
| def get_useragent(): | |
| """Returns a random user agent from the list.""" | |
| return random.choice(_useragent_list) | |
| def extract_text_from_webpage(html_content): | |
| """Extracts visible text from HTML content using BeautifulSoup.""" | |
| soup = BeautifulSoup(html_content, "html.parser") | |
| # Remove unwanted tags | |
| for tag in soup(["script", "style", "header", "footer", "nav"]): | |
| tag.extract() | |
| # Get the remaining visible text | |
| visible_text = soup.get_text(strip=True) | |
| return visible_text | |
| def search(term, num_results=1, lang="ko", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None): | |
| """Performs a Google search and returns the results.""" | |
| escaped_term = urllib.parse.quote_plus(term) | |
| start = 0 | |
| all_results = [] | |
| # Fetch results in batches | |
| while start < num_results: | |
| resp = requests.get( | |
| url="https://www.google.com/search", | |
| headers={"User-Agent": get_useragent()}, # Set random user agent | |
| params={ | |
| "q": term, | |
| "num": num_results - start, # Number of results to fetch in this batch | |
| "hl": lang, | |
| "start": start, | |
| "safe": safe, | |
| }, | |
| timeout=timeout, | |
| verify=ssl_verify, | |
| ) | |
| resp.raise_for_status() # Raise an exception if request fails | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| result_block = soup.find_all("div", attrs={"class": "g"}) | |
| # If no results, continue to the next batch | |
| if not result_block: | |
| start += 1 | |
| continue | |
| # Extract link and text from each result | |
| for result in result_block: | |
| link = result.find("a", href=True) | |
| if link: | |
| link = link["href"] | |
| try: | |
| # Fetch webpage content | |
| webpage = requests.get(link, headers={"User-Agent": get_useragent()}) | |
| webpage.raise_for_status() | |
| # Extract visible text from webpage | |
| visible_text = extract_text_from_webpage(webpage.text) | |
| all_results.append({"link": link, "text": visible_text}) | |
| except requests.exceptions.RequestException as e: | |
| # Handle errors fetching or processing webpage | |
| print(f"Error fetching or processing {link}: {e}") | |
| all_results.append({"link": link, "text": None}) | |
| else: | |
| all_results.append({"link": None, "text": None}) | |
| start += len(result_block) # Update starting index for next batch | |
| return all_results | |
| def chat(message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, search_key=""): | |
| messages=[{"role":"system","content":system_message+"And, your name is chatchat."}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| input_ids=tok.apply_chat_template(messages, add_generation_prompt=True,return_tensors="pt") | |
| with torch.no_grad(): | |
| o=mod.generate(input_ids, max_new_tokens=256,do_sample=True,temperature=0.7,top_p=0.9)[0][input_ids.shape[-1]:] | |
| ans=tok.decode(o, skip_special_tokens=True) | |
| yield ans | |
| ai1=gr.ChatInterface( | |
| chat, | |
| chatbot=chatbot, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message", interactive=True), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.1, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ) | |
| ], | |
| ) | |
| with gr.Blocks(theme="prithivMLmods/Minecraft-Theme") as ai: | |
| gr.TabbedInterface([ai1],["Chatchat"]) | |
| ai.launch() |