import gradio as gr | |
from transformers import pipeline | |
# Load your fine-tuned model from Hugging Face Hub | |
model_id = "peterjandre/finetuned-codet5-vbnet-csharp" | |
# Use text2text-generation pipeline (suitable for CodeT5) | |
generator = pipeline("text2text-generation", model=model_id) | |
def generate_code(prompt): | |
if not prompt: | |
return "Please enter a prompt." | |
outputs = generator(prompt, max_length=256, num_return_sequences=1) | |
return outputs[0]['generated_text'] | |
# Build Gradio interface | |
iface = gr.Interface( | |
fn=generate_code, | |
inputs=gr.Textbox(lines=5, placeholder="Enter code prompt here..."), | |
outputs="textbox", | |
title="CodeT5 VBNet/C# Code Generator", | |
description="Generate VB.NET or C# code from your prompt using a fine-tuned CodeT5 model." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |