Spaces:
Sleeping
Sleeping
| import cv2 | |
| import gradio as gr | |
| import os | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| import matplotlib.pyplot as plt | |
| import warnings | |
| import time | |
| warnings.filterwarnings("ignore") | |
| # Clone the DIS repo and move contents (make sure this only happens once per session) | |
| os.system("git clone https://github.com/xuebinqin/DIS") | |
| os.system("mv DIS/IS-Net/* .") | |
| # project imports | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import * | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Download official weights | |
| if not os.path.exists("saved_models"): | |
| os.mkdir("saved_models") | |
| os.system("mv isnet.pth saved_models/") | |
| class GOSNormalize(object): | |
| ''' | |
| Normalize the Image using torch.transforms | |
| ''' | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self,image): | |
| image = normalize(image, self.mean, self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) | |
| def load_image(im_path, hypar): | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im, 255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
| def build_model(hypar, device): | |
| net = hypar["model"] | |
| # convert to half precision if needed | |
| if(hypar["model_digit"]=="half"): | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if hypar["restore_model"] != "": | |
| net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device)) | |
| net.to(device) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| net.eval() | |
| if hypar["model_digit"] == "full": | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
| ds_val = net(inputs_val_v)[0] | |
| pred_val = ds_val[0][0, :, :, :] | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), | |
| (shapes_val[0][0], shapes_val[0][1]), | |
| mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| # normalize to [0, 1], add a small epsilon to avoid division by zero | |
| pred_val = (pred_val - mi) / (ma - mi + 1e-8) | |
| if device == 'cuda': | |
| torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) | |
| # Parameters | |
| hypar = { | |
| "model_path": "./saved_models", | |
| "restore_model": "isnet.pth", | |
| "interm_sup": False, | |
| "model_digit": "full", | |
| "seed": 0, | |
| "cache_size": [1024, 1024], | |
| "input_size": [1024, 1024], | |
| "crop_size": [1024, 1024], | |
| "model": ISNetDIS() | |
| } | |
| # Build the model | |
| net = build_model(hypar, device) | |
| def inference(img1, img2, img3, logs): | |
| """ | |
| Process up to 3 images in parallel (each can be None if not provided). | |
| """ | |
| start_time = time.time() | |
| logs = logs or "" # initialize logs if None | |
| # Gather images into a list (filter out None) | |
| image_paths = [i for i in [img1, img2, img3] if i is not None] | |
| if not image_paths: | |
| # No images were uploaded | |
| logs += f"No images to process.\n" | |
| return [], logs, logs | |
| processed_pairs = [] | |
| for path in image_paths: | |
| image_tensor, orig_size = load_image(path, hypar) | |
| mask = predict(net, image_tensor, orig_size, hypar, device) | |
| pil_mask = Image.fromarray(mask).convert('L') | |
| im_rgb = Image.open(path).convert("RGB") | |
| im_rgba = im_rgb.copy() | |
| im_rgba.putalpha(pil_mask) | |
| processed_pairs.append([im_rgba, pil_mask]) | |
| end_time = time.time() | |
| elapsed = round(end_time - start_time, 2) | |
| # Flatten into final gallery list | |
| final_images = [] | |
| for pair in processed_pairs: | |
| final_images.extend(pair) | |
| logs += f"Processed {len(processed_pairs)} image(s) in {elapsed} second(s).\n" | |
| # Return the flattened gallery, state, and logs text | |
| return final_images, logs, logs | |
| title = "Highly Accurate Dichotomous Image Segmentation" | |
| description = ( | |
| "This is an unofficial demo for DIS, a model that can remove the background from up to 3 images. " | |
| "Simply upload 1 to 3 images, or use the example images. " | |
| "GitHub: https://github.com/xuebinqin/DIS<br>" | |
| "Telegram bot: https://t.me/restoration_photo_bot<br>" | |
| "[](https://twitter.com/DoEvent)" | |
| ) | |
| article = ( | |
| "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' " | |
| "alt='visitor badge'></center></div>" | |
| ) | |
| interface = gr.Interface( | |
| fn=inference, | |
| inputs=[ | |
| gr.Image(type='filepath', label='Image 1'), | |
| gr.Image(type='filepath', label='Image 2'), | |
| gr.Image(type='filepath', label='Image 3'), | |
| gr.State() | |
| ], | |
| outputs=[ | |
| gr.Gallery(label="Output (rgba + mask)"), | |
| gr.State(), | |
| gr.Textbox(label="Logs", lines=6) | |
| ], | |
| examples=[ | |
| ["robot.png", None, None], | |
| ["robot.png", "ship.png", None], | |
| ], | |
| title=title, | |
| description=description, | |
| article=article, | |
| flagging_mode="never", | |
| cache_mode="lazy" | |
| ).queue().launch(show_api=True, show_error=True) | |