File size: 1,918 Bytes
9369100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from PIL import Image
import torch
import gradio as gr
import openpifpaf
import numpy as np


predictor_animal = openpifpaf.Predictor(checkpoint='shufflenetv2k30-animalpose')
predictor_whole_body = openpifpaf.Predictor(checkpoint='shufflenetv2k16-wholebody')
predictor_vehicle = openpifpaf.Predictor(checkpoint='shufflenetv2k16-apollo-24')


def inference(img, ver):
    
    if ver == 'whole-body':
        predictor = predictor_whole_body
    elif ver == 'vehicles':
        predictor = predictor_vehicle
    elif ver == 'animal':
        predictor = predictor_animal
    else:
        raise ValueError('invalid version')

    predictions, gt_anns, image_meta = predictor.pil_image(img)
    annotation_painter = openpifpaf.show.AnnotationPainter()
    with openpifpaf.show.image_canvas(img, fig_file = "test.jpg") as ax:
        annotation_painter.annotations(ax, predictions)

    out = Image.open("test.jpg")
    return out
      
  
title = "Openpifpaf"
description = "Gradio demo for openpifpaf. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below"
article = "<p style='text-align: center'><a href='https://github.com/openpifpaf/openpifpaf' target='_blank'>Github Repo Openpifpaf</a> | <a href='https://github.com/peterbonnesoeur' target='_blank'>Github Repo peterbonnesoeur</a></p>"

examples=[ ['bill.png', 'whole-body'], ['vehicles.jpg', 'vehicles'], ['apolloscape.jpeg', 'vehicles'], ['dalmatian.jpg', 'animal'], ['elon.png','whole-body'], ['billie.png','whole-body']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Radio(['pose','whole-body', 'vehicles', 'animal'], type="value", default='whole-body', label='version')
], gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples).launch()