Spaces:
Runtime error
Runtime error
| # set path | |
| import glob, os, sys; sys.path.append('../scripts') | |
| #import helper | |
| import scripts.process as pre | |
| import scripts.clean as clean | |
| #import needed libraries | |
| import seaborn as sns | |
| from pandas import DataFrame | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import streamlit as st | |
| import pandas as pd | |
| from sklearn.feature_extraction import _stop_words | |
| from haystack.document_stores import InMemoryDocumentStore | |
| from haystack.pipelines import ExtractiveQAPipeline | |
| from haystack.nodes import FARMReader, TfidfRetriever | |
| import string | |
| from markdown import markdown | |
| from tqdm.autonotebook import tqdm | |
| import numpy as np | |
| import tempfile | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| #Haystack Components | |
| def start_haystack(documents_processed): | |
| document_store = InMemoryDocumentStore() | |
| document_store.write_documents(documents_processed) | |
| retriever = TfidfRetriever(document_store=document_store) | |
| reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True) | |
| pipeline = ExtractiveQAPipeline(reader, retriever) | |
| return pipeline | |
| def ask_question(question,pipeline): | |
| prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) | |
| results = [] | |
| for answer in prediction["answers"]: | |
| answer = answer.to_dict() | |
| if answer["answer"]: | |
| results.append( | |
| { | |
| "context": "..." + answer["context"] + "...", | |
| "answer": answer["answer"], | |
| "relevance": round(answer["score"] * 100, 2), | |
| "offset_start_in_doc": answer["offsets_in_document"][0]["start"], | |
| } | |
| ) | |
| else: | |
| results.append( | |
| { | |
| "context": None, | |
| "answer": None, | |
| "relevance": round(answer["score"] * 100, 2), | |
| } | |
| ) | |
| return results | |
| def app(): | |
| with st.container(): | |
| st.markdown("<h1 style='text-align: center; color: black;'> Keyword Search</h1>", unsafe_allow_html=True) | |
| st.write(' ') | |
| st.write(' ') | |
| with st.expander("βΉοΈ - About this app", expanded=False): | |
| st.write( | |
| """ | |
| The *Keyword Search* app is an easy-to-use interface built in Streamlit for doing keyword search in policy document - developed by GIZ Data and the Sustainable Development Solution Network. | |
| """ | |
| ) | |
| st.markdown("") | |
| st.markdown("") | |
| st.markdown("## π Step One: Upload document ") | |
| with st.container(): | |
| file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt']) | |
| if file is not None: | |
| with tempfile.NamedTemporaryFile(mode="wb") as temp: | |
| bytes_data = file.getvalue() | |
| temp.write(bytes_data) | |
| file_name = file.name | |
| file_path = temp.name | |
| st.write("Filename: ", file.name) | |
| # load document | |
| documents = pre.load_document(temp.name,file_name) | |
| documents_processed = pre.preprocessing(documents) | |
| pipeline = start_haystack(documents_processed) | |
| #docs = pre.load_document(temp.name, file) | |
| # preprocess document | |
| #haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs) | |
| question = st.text_input("Please enter your question here, we will look for the answer in the document.", | |
| value="floods",) | |
| if st.button("Find them."): | |
| with st.spinner("π Performing semantic search on"):#+file.name+"..."): | |
| try: | |
| msg = 'Asked ' + question | |
| logging.info(msg) | |
| results = ask_question(question,pipeline) | |
| st.write('## Top Results') | |
| st.write(results) | |
| for count, result in enumerate(results): | |
| if result["answer"]: | |
| answer, context = result["answer"], result["context"] | |
| start_idx = context.find(answer) | |
| end_idx = start_idx + len(answer) | |
| st.write( | |
| markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]), | |
| unsafe_allow_html=True, | |
| ) | |
| st.markdown(f"**Relevance:** {result['relevance']}") | |
| else: | |
| st.info( | |
| "π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" | |
| ) | |
| except Exception as e: | |
| logging.exception(e) | |