File size: 4,343 Bytes
41460de
 
 
 
 
 
 
 
 
 
 
 
c5118ce
 
 
 
41460de
c5118ce
41460de
c5118ce
 
 
41460de
c5118ce
 
 
41460de
 
c5118ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41460de
c5118ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
st.set_page_config(f'SDSN x GIZ Policy Tracing', layout="wide")

import seaborn as sns
import pdfplumber
from pandas import DataFrame
from keybert import KeyBERT
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st


with st.container():
    st.markdown("<h1 style='text-align: center; color: black;'> Policy Action Tracking</h1>", unsafe_allow_html=True)
    st.write(' ')
    st.write(' ')

with st.expander("ℹ️ - About this app", expanded=True):

    st.write(
        """     
        The *Policy Action Tracker* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.

        It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) πŸ€— to create keywords/keyphrases that are most similar to a document.
        """
    )

    st.markdown("")

st.markdown("")
st.markdown("##  πŸ“Œ Step One: Upload document ")

with st.container():

    file = st.file_uploader('Upload PDF File', type=['pdf'])

    if file is not None:
        text = []
        with pdfplumber.open(file) as pdf:
            for page in pdf.pages:
                text.append(page.extract_text())
            text_str = ' '.join([page for page in text])

            st.write('Number of pages:',len(pdf.pages))

        @st.cache(allow_output_mutation=True)
        def load_model():
            return KeyBERT()

        kw_model = load_model()

        keywords = kw_model.extract_keywords(
        text_str,
        keyphrase_ngram_range=(1, 2),
        use_mmr=True,
        stop_words="english",
        top_n=15,
        diversity=0.7,
        )

        st.markdown("## 🎈 What is my document about?")
    
        df = (
            DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
            .sort_values(by="Relevancy", ascending=False)
            .reset_index(drop=True)
        )

        df.index += 1

        # Add styling
        cmGreen = sns.light_palette("green", as_cmap=True)
        cmRed = sns.light_palette("red", as_cmap=True)
        df = df.style.background_gradient(
            cmap=cmGreen,
            subset=[
                "Relevancy",
            ],
        )
        c1, c2, c3 = st.columns([1, 3, 1])

        format_dictionary = {
            "Relevancy": "{:.1%}",
        }

        df = df.format(format_dictionary)

        with c2:
            st.table(df) 

        ######## SDG!
        from transformers import pipeline 

        finetuned_checkpoint = "peter2000/roberta-base-finetuned-osdg"
        classifier = pipeline("text-classification", model=finetuned_checkpoint)

        word_list = text_str.split()
        len_word_list = len(word_list)
        par_list = []
        par_len = 130
        for i in range(0,len_word_list // par_len):
            string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
            par_list.append(string_part)
            
        labels = classifier(par_list)
        labels_= [(l['label'],l['score']) for l in labels]
        df = DataFrame(labels_, columns=["SDG", "Relevancy"])
        df['text'] = par_list      
        df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)  
        df.index += 1
        #df =df[df['Relevancy']>.95]
        x = df['SDG'].value_counts()

        plt.rcParams['font.size'] = 25
        colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
        # plot
        fig, ax = plt.subplots()
        ax.pie(x, colors=colors, radius=2, center=(4, 4),
             wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))

        st.markdown("## 🎈 Anything related to SDGs?")

        c4, c5, c6 = st.columns([5, 7, 1])

        # Add styling
        cmGreen = sns.light_palette("green", as_cmap=True)
        cmRed = sns.light_palette("red", as_cmap=True)
        df = df.style.background_gradient(
            cmap=cmGreen,
            subset=[
                "Relevancy",
            ],
        )

        format_dictionary = {
            "Relevancy": "{:.1%}",
        }

        df = df.format(format_dictionary)

        with c4:
            st.pyplot(fig)
        with c5:
            st.table(df)