from nltk.corpus import stopwords from nltk.tokenize import word_tokenize def sentiment_analysis_LR(input): # Assuming you have a Logistic Regression model and TfidfVectorizer in the pipeline input = preprocess_text(input) vectorizer = model_LR.named_steps['tfidfvectorizer'] lr_classifier = model_LR.named_steps['logisticregression'] # Transform the user input using the TF-IDF vectorizer user_input_tfidf = vectorizer.transform([input]) # Make predictions user_pred = lr_classifier.predict(user_input_tfidf) # Display the prediction if user_pred[0] == 0: return 0 else: return 1 def sentiment_analysis_NB(input): input = preprocess_text(input) vectorizer = model_NB.named_steps['tfidf'] nb_classifier = model_NB.named_steps['nb'] # Transform the user input using the TF-IDF vectorizer user_input_tfidf = vectorizer.transform([input]) # Make predictions user_pred = nb_classifier.predict(user_input_tfidf) # Display the prediction if user_pred[0] == 0: return 0 else: return 1